精英家教网 > 高中数学 > 题目详情
17.$\int_1^2{({e^x}-\frac{2}{x})}dx$=e2-e-2ln2.

分析 根据定积分的计算法则计算即可.

解答 解:$\int_1^2{({e^x}-\frac{2}{x})}dx$=(ex-2lnx)|${\;}_{1}^{2}$=e2-2ln2-e+2ln1=e2-e-2ln2,
故答案为:e2-e-2ln2

点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门也推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功的交易,并对其评价进行统计,对商品的好评率为$\frac{3}{5}$,对服务的好评率为$\frac{3}{4}$,其中对商品和服务都做出好评的交易为80次.
(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题正确的是(  )
A.若$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$
B.两个有共同起点且相等的向量,其终点可能不同
C.向量$\overrightarrow{AB}$的长度与向量$\overrightarrow{BA}$的长度相等
D.若非零向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则A、B、C、D四点共线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\sqrt{3}$sinωx+cos(ωx+$\frac{π}{3}$)+cos(ωx-$\frac{π}{3}$)-1(ω>0),x∈R,且函数的最小正周期为π:
(1)求函数f(x)的解析式;
(2)在△ABC中,角A、B、C所对的边分别是a、b、c,若f(B)=0,$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{3}{2}$,且a+c=4,试求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{x}{a}$-lnx(a≠0,a∈R).
(1)求函数f(x)的单调区间;
(2)若存在两个不相等的正数x1,x2,满足f(x1)=f(x2),求证:x1+x2>2a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)的导函数为f′(x),如对任意实数x,有f(x)>f′(x),且f(x)+1为奇函数,则不等式f(x)+ex<0的解集是(  )
A.(-∞,0)B.(0,+∞)C.(-∞,$\frac{1}{e}$)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-4lnx
(1)求函数f(x)的单调区间;
(2)若函数g(x)=$\frac{f(x)}{2}$+3lnx-ax(a>0),证明:函数g(x)有且仅有1个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求与双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1共渐近线且焦点在圆x2+y2=100上的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.sin75°的值等于(  )
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$

查看答案和解析>>

同步练习册答案