精英家教网 > 高中数学 > 题目详情
1.设函数f(x)的导函数为f′(x),对任意x∈R都有xf′(x)<f(x)成立,则(  )
A.3f(2)>2f(3)B.3f(2)=2f(3)
C.3f(2)<2f(3)D.3f(2)与2f(3)的大小不确定.

分析 构造函数,利用函数的单调性判断即可.

解答 解:设函数y=$\frac{f(x)}{x}$,则y′=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵xf′(x)<f(x),∴y′<0,
可得y=$\frac{f(x)}{x}$对任意x∈R,函数y是减函数,
∴$\frac{f(3)}{3}$<$\frac{f(2)}{2}$,
可得3f(2)>2f(3).
故选:A.

点评 本题考查函数的单调性的判断与应用,构造函数,求解导函数判断单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.一批产品有一级品100个,二级品60个,三级品40个,分别采用系统抽样和分层抽样,从这批产品中抽取一个容量为20的样本.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{x}{a}$-lnx(a≠0,a∈R).
(1)求函数f(x)的单调区间;
(2)若存在两个不相等的正数x1,x2,满足f(x1)=f(x2),求证:x1+x2>2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-4lnx
(1)求函数f(x)的单调区间;
(2)若函数g(x)=$\frac{f(x)}{2}$+3lnx-ax(a>0),证明:函数g(x)有且仅有1个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AB=AP,E为棱PD的中点
(Ⅰ)求直线AE与平面PBD所成角的正弦值;
(Ⅱ)若F为AB的中点,棱PC上是否存在一点M,使得FM⊥AC,若存在,求出$\frac{PM}{MC}$的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求与双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1共渐近线且焦点在圆x2+y2=100上的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知an=$\frac{{n-\sqrt{96}}}{{n-\sqrt{97}}}$(n∈N*),则在数列{an}的前30项中最大项和最小项分别是(  )
A.a1,a30B.a1,a9C.a10,a9D.a10,a30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知复数z=a2-1-(a2-3a+2)i,a∈R.
(1)若z是纯虚数时,求a的值;
(2)若z是虚数,且z的实部比虚部大时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设$\overrightarrow{e_1}$,$\overrightarrow{e_2}$为单位向量,且$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夹角为60°,若$\overrightarrow a$=$\overrightarrow{e_1}$+3$\overrightarrow{e_2}$,$\overrightarrow b$=2$\overrightarrow{e_1}$,则|$\overrightarrow a$+$\overrightarrow b$|等于3$\sqrt{3}$,向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案