精英家教网 > 高中数学 > 题目详情
10.已知复数z=a2-1-(a2-3a+2)i,a∈R.
(1)若z是纯虚数时,求a的值;
(2)若z是虚数,且z的实部比虚部大时,求a的取值范围.

分析 (1)利用复数的基本概念,列出方程求解即可.
(2)通过复数的实部比虚部大时,列出不等式求解即可.

解答 解:复数z=a2-1-(a2-3a+2)i,a∈R.
(1)若z是纯虚数时,可得:a2-1=0,a2-3a+2≠0,解得a=1.
a的值为:1;
(2)若z是虚数,且z的实部比虚部大时,
可得:a2-1>-a2+3a-2≠0,解得a>1或a$<\frac{1}{2}$且a≠2.
a的取值范围:(-∞,$\frac{1}{2}$)∪(1,2)∪(2,+∞).

点评 本题考查复数的基本概念,不等式的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{2}{x^2}$-(3a+1)x+3alnx.
(Ⅰ)若曲线y=f(x)在点(4,f ( 4 ))处的切线的斜率小于0,求f(x)的单调区间;
(Ⅱ)对任意的a∈[1,3],x1,x2∈[1,3](x1≠x2),恒有$|f({x_1})-f({x_2})|<k|\frac{1}{x_1}-\frac{1}{x_2}|$,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)的导函数为f′(x),对任意x∈R都有xf′(x)<f(x)成立,则(  )
A.3f(2)>2f(3)B.3f(2)=2f(3)
C.3f(2)<2f(3)D.3f(2)与2f(3)的大小不确定.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C的对边分别为a,b,c,且b2+c2=a2+$\sqrt{3}$bc,acosB=bcosA
(1)求角A,B,C的大小;
(2)若BC边上的中线AM的长为$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{\frac{sinax}{x},x<0}\\{b,x=0}\\{xcos\frac{1}{x}+2,x>0}\end{array}\right.$在定义域内连续,则a+b=(  )
A.4B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知m,n∈R,函数f(x)=(4x+m)lnx,g(x)=x2+nx-5,曲线y=f(x)与曲线y=g(x)在x=1处的切线相同.
(1)求f(x),g(x)的解析式:
(2)求F(x)=f(x)-g(x)的单调区间;
(3)证明:当x∈(0,k](0<k≤1)时,不等式(2x+1)f(x)-(2x+1)g(x)≤0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数z=$\frac{1}{{i}^{3}}$在复平面内对应的点的坐标为(  )
A.(0,1)B.(0,-1)C.(-1,0)D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{|x+1|-2a,x≤0}\\{lo{g}_{3}x,x>0}\\{\;}\end{array}\right.$.
①当a=0时,若f(x)=0,则x=±1;
②若f(x)有三个不同零点,则实数a的取值范围为0<a≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某班甲、乙、丙三名同学竞选班委,三人间是否当选相互独立,甲当选的概率为$\frac{4}{5}$,乙当选的概率为$\frac{3}{5}$,丙当选的概率为$\frac{7}{10}$,求:
(1)恰有一名同学当选的概率;
(2)至多有两人当选的概率.

查看答案和解析>>

同步练习册答案