分析 (1)根据余弦定理求出A,利用正弦定理将边化角得出A,B的关系求出B,利用内角和求出C;
(2)设CM=x,在△ACM中,利用余弦定理列方程解出CM,得出AC,BC,代入面积公式计算面积.
解答
解:(1)在△ABC中,∵b2+c2=a2+$\sqrt{3}$bc,∴b2+c2-a2=$\sqrt{3}$bc,∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{3}}{2}$,
又A∈(0,π),∴A=$\frac{π}{6}$.
∵acosB=bcosA,∴sinAcosB-sinBcosA=0,即sin(A-B)=0,
∴A-B=0,∴B=A=$\frac{π}{6}$.
∴C=π-A-B=$\frac{2π}{3}$.
(2)∵A=B,∴BC=AC,
设CM=x,则AC=2x,又AM=$\sqrt{7}$,
在△ACM中,由余弦定理得:AM2=CM2+AC2-2CM$•AC•cos\frac{2π}{3}$,
∴7=x2+4x2-4x2•(-$\frac{1}{2}$),解得x=1.
∴AC=BC=2x=2,
∴S△ABC=$\frac{1}{2}AC•BC•sin\frac{2π}{3}$=$\frac{1}{2}×2×2×\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
点评 本题考查了正弦定理,余弦定理,三角形的面积公式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 若$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$ | |
| B. | 两个有共同起点且相等的向量,其终点可能不同 | |
| C. | 向量$\overrightarrow{AB}$的长度与向量$\overrightarrow{BA}$的长度相等 | |
| D. | 若非零向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则A、B、C、D四点共线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a1,a30 | B. | a1,a9 | C. | a10,a9 | D. | a10,a30 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | B. | $\frac{{\sqrt{6}-\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{3}+\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{3}-\sqrt{2}}}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com