精英家教网 > 高中数学 > 题目详情
4.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求证:CD⊥AM;
(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.

分析 (I)取CD的中点O,连接OB,OM,则可证OM∥AB,由CD⊥OM,CD⊥OB得出CD⊥平面ABOM,于是CD⊥AM;
(II)以O为原点建立空间直角坐标系,求出$\overrightarrow{AM}$和平面BDM的法向量$\overrightarrow{n}$,则直线AM与平面BDM所成角的正弦值为|cos<$\overrightarrow{AM},\overrightarrow{n}$>|.

解答 (Ⅰ)证明:取CD的中点O,连接OB,OM.
∵△BCD是等边三角形,
∴OB⊥CD.
∵△CMD是等腰直角三角形,∠CMD=90°,
∴OM⊥CD.
∵平面CMD⊥平面BCD,平面CMD∩平面BCD=CD,OM?平面CMD,
∴OM⊥平面BCD.
又∵AB⊥平面BCD,
∴OM∥AB.
∴O,M,A,B四点共面.
∵OB∩OM=O,OB?平面OMAB,OM?平面OMAB,
∴CD⊥平面OMAB.∵AM?平面OMAB,
∴CD⊥AM.
(Ⅱ)作MN⊥AB,垂足为N,则MN=OB.
∵△BCD是等边三角形,BC=2,
∴$OB=\sqrt{3}$,CD=2.
在Rt△ANM中,$AN=\sqrt{A{M^2}-M{N^2}}=\sqrt{A{M^2}-O{B^2}}=1$.
∵△CMD是等腰直角三角形,∠CMD=90°,
∴$OM=\frac{1}{2}CD=1$.
∴AB=AN+NB=AN+OM=2.
以点O为坐标原点,以OC,BO,OM为坐标轴轴建立空间直角坐标系O-xyz,
则M(0,0,1),$B({0,-\sqrt{3},0})$,D(-1,0,0),$A({0,-\sqrt{3},2})$.
∴$\overrightarrow{AM}=({0,\sqrt{3},-1})$,$\overrightarrow{BM}=({0,\sqrt{3},1})$,$\overrightarrow{BD}=({-1,\sqrt{3},0})$.
设平面BDM的法向量为$\overrightarrow{n}$=(x,y,z),
由n•$\overrightarrow{BM}=0$,n•$\overrightarrow{BD}=0$,∴$\left\{\begin{array}{l}{\sqrt{3}y+z=0}\\{-x+\sqrt{3}y=0}\end{array}\right.$,
令y=1,得$\overrightarrow{n}$=$({\sqrt{3},1,-\sqrt{3}})$.
设直线AM与平面BDM所成角为θ,
则$sinθ=|{cos?\overrightarrow{AM},n>}|$=$\frac{{|{\overrightarrow{AM}•n}|}}{{|{\overrightarrow{AM}}||n|}}$=$\frac{{2\sqrt{3}}}{{2×\sqrt{7}}}=\frac{{\sqrt{21}}}{7}$.
∴直线AM与平面BDM所成角的正弦值为$\frac{{\sqrt{21}}}{7}$.

点评 本题考查了线面垂直的判定,线面角的计算,空间向量的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.“m=1”是“直线mx+(m+1)y-1=0和直线2x-my+1=0垂直”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\frac{1}{3}{x^3}+2a{x^2}+2$在区间[1,4]上是单调递增函数,则实数a的最小值是(  )
A.-1B.-4C.$-\frac{1}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{x}{a}$-lnx(a≠0,a∈R).
(1)求函数f(x)的单调区间;
(2)若存在两个不相等的正数x1,x2,满足f(x1)=f(x2),求证:x1+x2>2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,△ABC的外接圆半径为R,若C=$\frac{3π}{4}$,且sin(A+C)=$\frac{BC}{R}$•cos(A+B).
(1)证明:BC,AC,2BC成等比数列;
(2)若△ABC的面积是1,求边AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-4lnx
(1)求函数f(x)的单调区间;
(2)若函数g(x)=$\frac{f(x)}{2}$+3lnx-ax(a>0),证明:函数g(x)有且仅有1个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AB=AP,E为棱PD的中点
(Ⅰ)求直线AE与平面PBD所成角的正弦值;
(Ⅱ)若F为AB的中点,棱PC上是否存在一点M,使得FM⊥AC,若存在,求出$\frac{PM}{MC}$的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知an=$\frac{{n-\sqrt{96}}}{{n-\sqrt{97}}}$(n∈N*),则在数列{an}的前30项中最大项和最小项分别是(  )
A.a1,a30B.a1,a9C.a10,a9D.a10,a30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=x3-$\frac{1}{2}$x2-2x+5.
(1)求f(x)的单调区间;
(2)过(0,a)可作y=f(x)的三条切线,求a的取值范围.

查看答案和解析>>

同步练习册答案