精英家教网 > 高中数学 > 题目详情
14.“m=1”是“直线mx+(m+1)y-1=0和直线2x-my+1=0垂直”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 对m与直线的斜率分类讨论,利用直线相互垂直的充要条件即可判断出结论.

解答 解:m=0时,两条直线分别化为:y-1=0,2x+1=0,此时两条直线相互垂直,满足条件.
m=-1时,两条直线分别化为:-x-1=0,2x+y+1=0,此时两条直线不相互垂直,舍去.
m≠0,-1时,由两条直线相互垂直:则-$\frac{m}{m+1}$×$\frac{2}{m}$=-1,解得m=1.
综上可得:m=0或1时,两条直线相互垂直.
∴“m=1”是“直线mx+(m+1)y-1=0和直线2x-my+1=0垂直”的充分不必要条件.
故选:A.

点评 本题考查了直线相互垂直的充要条件、简易逻辑的判定方法,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列各图是同一坐标系中某三次函数及其导函数的图象,其中可能正确的序号是(  )
A.??①②B.??③④C.??①③D.??①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{1}{3}{x^3}-b{x^2}+2x-a$,x=2是f(x)的一个极值点.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)当a>0时,求方程f(x)=0的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F1,F2为等轴双曲线C的焦点,点P在C上,|PFl|=2|PF2|,则cos∠F1PF2=(  )
A.$\frac{1}{4}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)为定义在(0,+∞)上的单调递增函数,对任意x∈(0,+∞),都满足f[f(x)-log2x]=3,则函数y=f(x)-f′(x)-2(f′(x)为f(x)的导函数)的零点所在区间是(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax2+lnx(a∈R)
(1)当a=1时,求曲线f(x)在点P(1,1)处的切线方程;
(2)若f(x)在(0,e]是单调递增函数,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图是函数y=Asin(ωx+φ) (A>0,ω>0,-π<φ<π)的部分图象,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求证:CD⊥AM;
(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.

查看答案和解析>>

同步练习册答案