精英家教网 > 高中数学 > 题目详情
2.已知函数$f(x)=\frac{1}{3}{x^3}-b{x^2}+2x-a$,x=2是f(x)的一个极值点.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)当a>0时,求方程f(x)=0的解的个数.

分析 (I)利用f′(2)=0即可得出b,再解出f′(x)>0即可得出其单调递增区间;
(Ⅱ)问题转化为求$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x=a的解的个数,令g(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x,求出g(x)的极大值和极小值,通过讨论a的范围求出方程的解的个数即可.

解答 解:(I)f′(x)=x2-2bx+2,
∵x=2是f(x)的一个极值点,∴f′(2)=22--4b+2=0,解得b=$\frac{3}{2}$,
∴f′(x)=x2-3x+2,令f′(x)>0,解得x<1或x>2.
∴函数f(x)的单调递增区间是(-∞,1),(2,+∞);
(Ⅱ)求方程f(x)=0的解的个数即求$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x=a的解的个数,
令g(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x,g′(x)=x2-3x+2=(x-1)(x-2),
令g′(x)>0,解得:x>2或x<1,令g′(x)<0,解得:1<x<2,
∴g(x)在(-∞,1),(2,+∞)递增,在(1,2)递减,
∴g(x)极大值=g(1)=$\frac{5}{6}$,g(x)极小值=g(2)=$\frac{2}{3}$,
a>$\frac{5}{6}$或0<a<$\frac{2}{3}$时,方程1个解,
a=$\frac{5}{6}$或$\frac{2}{3}$时,方程2个解,
$\frac{2}{3}$<a<$\frac{5}{6}$时,方程3个解.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,方程根的情况,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数f(x)=x+2cosx在(0,2π)上的单调递减区间为$(\frac{π}{6},\frac{5π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+kx2-x+m,k,m∈R
(Ⅰ)若k=f′($\frac{2}{3}$),求f(x)的单调区间
(Ⅱ)若函数f(x)在(1,2)上单调递增,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{{{x^2}-ax+b}}{e^x}$经过点(0,3),且在该点处得切线与x轴平行
(1)求a,b的值;
(2)若x∈(t,t+1),其中t>-2,讨论函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门也推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功的交易,并对其评价进行统计,对商品的好评率为$\frac{3}{5}$,对服务的好评率为$\frac{3}{4}$,其中对商品和服务都做出好评的交易为80次.
(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“m=1”是“直线mx+(m+1)y-1=0和直线2x-my+1=0垂直”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一批产品有一级品100个,二级品60个,三级品40个,分别采用系统抽样和分层抽样,从这批产品中抽取一个容量为20的样本.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{x}{a}$-lnx(a≠0,a∈R).
(1)求函数f(x)的单调区间;
(2)若存在两个不相等的正数x1,x2,满足f(x1)=f(x2),求证:x1+x2>2a.

查看答案和解析>>

同步练习册答案