精英家教网 > 高中数学 > 题目详情
10.已知函数g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围.

分析 (1)求出函数的导数,根据f′(x)在[1,2]上最大值大于0,最小值小于0,得到关于b的不等式组,解出即可;
(2)由g(x)≥-x2+(a+2)x分离出参数a后,转化为求函数最值,利用导数可求最值.

解答 解:(1)由f(x)=x3+x2+bx,得f′(x)=3x2+2x+b,
∵f(x)在区间[1,2]上不是单调函数,
∴f′(x)在[1,2]上最大值大于0,最小值小于0
f′(x)=3${(x+\frac{1}{3})}^{2}$+b-$\frac{1}{3}$,
∴$\left\{\begin{array}{l}{{f′(x)}_{max}=16+b}\\{{f′(x)}_{min}=5+b}\end{array}\right.$,
∴-16<b<-5;
(2)由g(x)≥-x2+(a+2)x,得(x-lnx)a≤x2-2x.
∵x∈[1,e],∴lnx≤1≤x,且等号不能同时取,
∴lnx<x,即x-lnx>0,
∴a≤$\frac{{x}^{2}-2x}{x-lnx}$恒成立,即a≤( $\frac{{x}^{2}-2x}{x-lnx}$)min.     
令t(x)=$\frac{{x}^{2}-2x}{x-lnx}$,x∈[1,e],求导得,t′(x)=$\frac{(x-1)(x+2-lnx)}{{(x-lnx)}^{2}}$,
当x∈[1,e]时,x-1≥0,lnx≤1,x+2-lnx>0,从而t′(x)≥0,
∴t(x)在[1,e]上为增函数,tmin(x)=t(1)=-1,
∴a≤-1.

点评 该题考查利用导数研究函数的最值、函数恒成立问题,考查转化思想,考查学生分析解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{a(x-1)}{{x}^{2}}$,其中a>0.
(1)若直线y=kx-1与曲线y=f(x)相切于点(1,0),求a,k的值
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax3+bx2,当x=1时,f(x)取得的极值-3
(1)求函数f(x)的单调区间;
(2)若对于任意x>0,不等式f(x)+2m2-m≥0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+x2-ax(a为常数).
(Ⅰ)若x=1是函数f(x)的一个极值点,求a的值;
(Ⅱ)当0<a≤4时,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列各图是同一坐标系中某三次函数及其导函数的图象,其中可能正确的序号是(  )
A.??①②B.??③④C.??①③D.??①④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)是定义在R上的奇函数,f(-1)=-1,有xf′(x)>f(x),则不等式f(x)>x的解集是(  )
A.(-1,0)B.(1,+∞)C.(-1,0)U(1,+∞)D.(-∞,-1)U(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{1}{3}{x^3}-b{x^2}+2x-a$,x=2是f(x)的一个极值点.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)当a>0时,求方程f(x)=0的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)为定义在(0,+∞)上的单调递增函数,对任意x∈(0,+∞),都满足f[f(x)-log2x]=3,则函数y=f(x)-f′(x)-2(f′(x)为f(x)的导函数)的零点所在区间是(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{2}{x^2}$-(3a+1)x+3alnx.
(Ⅰ)若曲线y=f(x)在点(4,f ( 4 ))处的切线的斜率小于0,求f(x)的单调区间;
(Ⅱ)对任意的a∈[1,3],x1,x2∈[1,3](x1≠x2),恒有$|f({x_1})-f({x_2})|<k|\frac{1}{x_1}-\frac{1}{x_2}|$,求k的取值范围.

查看答案和解析>>

同步练习册答案