精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=lnx+x2-ax(a为常数).
(Ⅰ)若x=1是函数f(x)的一个极值点,求a的值;
(Ⅱ)当0<a≤4时,讨论函数f(x)的单调性.

分析 (Ⅰ)求导数,利用极值的 定义,即可求a的值;(Ⅱ)当0<a≤4时,判断导数的符号,即可判断f(x)的单调性.

解答 解:f′(x)=$\frac{1}{x}$+2x-a.
(1)由已知得:f′(1)=0,∴1+2-a=0,∴a=3;
(2)当0<a≤4时,f′(x)=$\frac{{2(x-\frac{a}{4})}^{2}+1-\frac{{a}^{2}}{8}}{x}$,
0<a≤2$\sqrt{2}$时,1-$\frac{{a}^{2}}{8}$≥0,而x>0,即f′(x)≥0,
故f(x)在(0,+∞)上是增函数;
2$\sqrt{2}$<a≤4时,1-$\frac{{a}^{2}}{8}$<0,
令f′(x)>0,解得:x>$\frac{a+\sqrt{{a}^{2}-8}}{4}$或x<$\frac{a-\sqrt{{a}^{2}-8}}{4}$,
令f′(x)<0,解得:$\frac{a-\sqrt{{a}^{2}-8}}{4}$<x<$\frac{a+\sqrt{{a}^{2}-8}}{4}$,
故函数在(0,$\frac{a-\sqrt{{a}^{2}-8}}{4}$),($\frac{a+\sqrt{{a}^{2}-8}}{4}$,+∞)递增,在($\frac{a-\sqrt{{a}^{2}-8}}{4}$,$\frac{a+\sqrt{{a}^{2}-8}}{4}$)递减.

点评 本题考查导数知识的综合运用,考查函数的极值,考查函数的单调性问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=61.
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|和|$\overrightarrow{a}$-$\overrightarrow{b}$|;
(3)若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,作△ABC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设h(x)=2x-sinx,g(x)=lnx+3x,f(x)=$\frac{{{e^x}-{e^{-x}}}}{2}$,k(x)=$\frac{1}{x}$-x,则(  )
A.h(sin27°)>h(sin26°)B.g(20.1)>g(20.2C.f(π)<f(3)D.k(ln2)<k(ln3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=x3+ax2-9x-1(a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y-6=0平行.
(1)求实数a的值;
(2)求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+kx2-x+m,k,m∈R
(Ⅰ)若k=f′($\frac{2}{3}$),求f(x)的单调区间
(Ⅱ)若函数f(x)在(1,2)上单调递增,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}$(p-2)x2+(2q-8)x+1(p>2,q>0).
(Ⅰ)当p=q=3时,求使f(x)≥1的x的取值范围;
(Ⅱ)若f(x)在区间[$\frac{1}{2}$,2]上单调递减,求pq的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门也推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功的交易,并对其评价进行统计,对商品的好评率为$\frac{3}{5}$,对服务的好评率为$\frac{3}{4}$,其中对商品和服务都做出好评的交易为80次.
(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题正确的是(  )
A.若$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$
B.两个有共同起点且相等的向量,其终点可能不同
C.向量$\overrightarrow{AB}$的长度与向量$\overrightarrow{BA}$的长度相等
D.若非零向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则A、B、C、D四点共线

查看答案和解析>>

同步练习册答案