分析 (Ⅰ)求导数,利用极值的 定义,即可求a的值;(Ⅱ)当0<a≤4时,判断导数的符号,即可判断f(x)的单调性.
解答 解:f′(x)=$\frac{1}{x}$+2x-a.
(1)由已知得:f′(1)=0,∴1+2-a=0,∴a=3;
(2)当0<a≤4时,f′(x)=$\frac{{2(x-\frac{a}{4})}^{2}+1-\frac{{a}^{2}}{8}}{x}$,
0<a≤2$\sqrt{2}$时,1-$\frac{{a}^{2}}{8}$≥0,而x>0,即f′(x)≥0,
故f(x)在(0,+∞)上是增函数;
2$\sqrt{2}$<a≤4时,1-$\frac{{a}^{2}}{8}$<0,
令f′(x)>0,解得:x>$\frac{a+\sqrt{{a}^{2}-8}}{4}$或x<$\frac{a-\sqrt{{a}^{2}-8}}{4}$,
令f′(x)<0,解得:$\frac{a-\sqrt{{a}^{2}-8}}{4}$<x<$\frac{a+\sqrt{{a}^{2}-8}}{4}$,
故函数在(0,$\frac{a-\sqrt{{a}^{2}-8}}{4}$),($\frac{a+\sqrt{{a}^{2}-8}}{4}$,+∞)递增,在($\frac{a-\sqrt{{a}^{2}-8}}{4}$,$\frac{a+\sqrt{{a}^{2}-8}}{4}$)递减.
点评 本题考查导数知识的综合运用,考查函数的极值,考查函数的单调性问题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | h(sin27°)>h(sin26°) | B. | g(20.1)>g(20.2) | C. | f(π)<f(3) | D. | k(ln2)<k(ln3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$ | |
| B. | 两个有共同起点且相等的向量,其终点可能不同 | |
| C. | 向量$\overrightarrow{AB}$的长度与向量$\overrightarrow{BA}$的长度相等 | |
| D. | 若非零向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则A、B、C、D四点共线 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com