精英家教网 > 高中数学 > 题目详情
3.如图是函数y=Asin(ωx+φ) (A>0,ω>0,-π<φ<π)的部分图象,求φ的值.

分析 由周期求出ω,由五点法作图求出φ的值.

解答 解:根据函数y=Asin(ωx+φ) (A>0,ω>0,-π<φ<π)的部分图象,
可得$\frac{T}{2}$=$\frac{π}{ω}$=2π-$\frac{3π}{4}$,∴ω=$\frac{4}{5}$.
再根据五点法作图可得$\frac{4}{5}$•$\frac{3π}{4}$+φ=$\frac{3π}{2}$,求得φ=$\frac{9π}{10}$.

点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+kx2-x+m,k,m∈R
(Ⅰ)若k=f′($\frac{2}{3}$),求f(x)的单调区间
(Ⅱ)若函数f(x)在(1,2)上单调递增,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“m=1”是“直线mx+(m+1)y-1=0和直线2x-my+1=0垂直”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一批产品有一级品100个,二级品60个,三级品40个,分别采用系统抽样和分层抽样,从这批产品中抽取一个容量为20的样本.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.为了得到函数y=3sin2x的图象,只要把y=3sin(2x+$\frac{π}{5}$)的图象上所有的点(  )
A.向左平移$\frac{π}{10}$个单位长度B.向右平移$\frac{π}{10}$个单位长度
C.向左平移$\frac{π}{5}$个单位长度D.向右平移$\frac{π}{5}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题正确的是(  )
A.若$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$
B.两个有共同起点且相等的向量,其终点可能不同
C.向量$\overrightarrow{AB}$的长度与向量$\overrightarrow{BA}$的长度相等
D.若非零向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则A、B、C、D四点共线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\frac{1}{3}{x^3}+2a{x^2}+2$在区间[1,4]上是单调递增函数,则实数a的最小值是(  )
A.-1B.-4C.$-\frac{1}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{x}{a}$-lnx(a≠0,a∈R).
(1)求函数f(x)的单调区间;
(2)若存在两个不相等的正数x1,x2,满足f(x1)=f(x2),求证:x1+x2>2a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知an=$\frac{{n-\sqrt{96}}}{{n-\sqrt{97}}}$(n∈N*),则在数列{an}的前30项中最大项和最小项分别是(  )
A.a1,a30B.a1,a9C.a10,a9D.a10,a30

查看答案和解析>>

同步练习册答案