精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an}满足:a2+a4=6,a6=S3,其中Sn为数列{an}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若k∈N*,{bn}为等比数列且b1=ak,b2=a3k,b3=S2k,求数列{an•bn}的前n项和Tn

分析 (I)利用等差数列的通项公式及其前n项和公式即可得出.
(II)利用等比数列的通项公式及其前n项和公式、“错位相减法”即可得出.

解答 解:(Ⅰ)设数列{an}的公差为d,由条件得$\left\{\begin{array}{l}{a_1}+d+{a_1}+3d=6\\{a_1}+5d=3{a_1}+3d\end{array}\right.⇒\left\{\begin{array}{l}{a_1}=1\\ d=1\end{array}\right.⇒{a_n}=n$.
(Ⅱ)∵由(Ⅰ)易得${S_n}=\frac{n(n+1)}{2}$,∵$a_{3k}^2={a_k}•{S_{2k}}$,
得9k2=k×k(2k+1)解得k=4.
b1=ak=4,b2=a3k=12,b3=S2k=36,
∵{bn}为等比数列,∴${b_n}=4•{3^{n-1}}$.
${a_n}•{b_n}=4n•{3^{n-1}}$,
$\begin{array}{l}{T_n}=4+4•2•3+4•3•{3^2}+…+4n•{3^{n-1}},(1)\\ 3{T_n}=4•3+4•2•{3^2}+4•3•{3^3}+…+4n•{3^n},(2)\end{array}$
(1)-(2)得$-2{T_n}=4+4•3+4•{3^2}+4•{3^3}+…+4•{3^{n-1}}-4n•{3^n}=\frac{{4(1-{3^n})}}{1-3}-4n•{3^n}$,
∴${T_n}=(2n-1)•{3^n}+1$.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.等腰三角形的腰长为4,底边长为5,求顶角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若不等式kx2+2kx+(k+2)<0对于一切x(x∈R)的解集为∅,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若cos2A+cos2B=1+cos2C,则△ABC的形状是(  )
A.直角三角形B.锐角三角形C.钝角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)的一个零点x0∈(2,4)在用二分法求精确度为0.01的x0的值时,判断区间中点的函数值的符号最少(  )
A.5次B.6次C.7次D.8次

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)求函数$f(x)=2cosxsin({x+\frac{π}{6}})$的单增区间;
(2)函数$y=3{cos^2}x-4cosx+1,x∈[0,\frac{π}{2}]$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知公比为q的等比数列{an}前n项之积为Tn,且T3=$\frac{1}{4}$,T6=32,则q的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C两焦点坐标为(-1,0)和(1,0),点P(1,$\frac{\sqrt{2}}{2}$)在椭圆上.
(1)求椭圆C的标准方程;
(2)若线段AB是椭圆C的一条动弦,且|AB|=2,求坐标原点O到直线AB距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对于R上可导的任意函数f(x),若满足(x-3)f′(x)≤0,则必有(  )
A.f(0)+f(6)≤2f(3)B.f(0)+f(6)<2f(3)C.f(0)+f(6)≥2f(3)D.f(0)+f(6)>2f(3)

查看答案和解析>>

同步练习册答案