精英家教网 > 高中数学 > 题目详情
1.已知数列{an}满足:a1=1,an+1-an=2n(n∈N*),数列bn=$\frac{{{{log}_2}(1+{a_n})}}{{1+{a_n}}}(n∈{N^*}$),Tn=b1+b2+…+bn,则T10的值为(  )
A.$\frac{245}{128}$B.$\frac{509}{256}$C.$\frac{1003}{512}$D.$\frac{2013}{1024}$

分析 利用累加法先求出数列{an}的通项公式,利用数列的递推关系求出数列{bn}的通项公式,利用错位相减法进行求和即可.

解答 解:∵a1=1,an+1-an=2n(n∈N*),
∴a2-a1=2,
a3-a2=22
a4-a3=23

an-an-1=2n-1
等式两边同时相加得:
an-a1=2+22+23+…2n-1
即an=a1+2+22+23+…2n-1=1+2+22+23+…2n-1=$\frac{1-{2}^{n}}{1-2}$=2n-1,
bn=$\frac{{{{log}_2}(1+{a_n})}}{{1+{a_n}}}(n∈{N^*}$)=$\frac{lo{g}_{2}(1+{2}^{n}-1)}{1+{2}^{n}-1}$=$\frac{lo{g}_{2}{2}^{n}}{{2}^{n}}$=$\frac{n}{{2}^{n}}$,
则Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,①
则$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+$\frac{3}{{2}^{4}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,②
①-②得
$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$=1-($\frac{1}{2}$)n-$\frac{n}{{2}^{n+1}}$,
则Tn=2-$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$=2-$\frac{2+n}{{2}^{n}}$.
则T10=2-$\frac{12}{{2}^{10}}$=2-$\frac{3}{{2}^{8}}$=2-$\frac{3}{256}$=$\frac{509}{256}$.
故选:B

点评 本题主要考查数列通项公式的求解以及利用错位相减法进行求解,利用累加法求出数列的通项公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若$\overrightarrow{OA}$=(-1,2),$\overrightarrow{OB}$=(1,-1),则$\overrightarrow{AB}$=(  )
A.(-2,3)B.(0,1)C.(-1,2)D.(2,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),它的一个顶点到一条渐近线的距离为d,已知d≥$\frac{\sqrt{2}}{3}$c(c为双曲线的半焦距长),则双曲线的离心率的取值范围为(  )
A.[$\frac{\sqrt{6}}{2}$,2]B.[$\frac{\sqrt{6}}{2}$,$\sqrt{3}$]C.($\sqrt{2}$,$\sqrt{3}$]D.(1,$\frac{\sqrt{6}}{2}$)∪[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,直三棱柱ABC-A1B1C1中,AA1=$\sqrt{2}$AB=$\sqrt{2}$BC=2,∠ABC=90°,D为CC1中点,则AB1与平面ABD所成角的正弦值是(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{2}}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(3,-1),$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$在$\overrightarrow{b}$上的正射影$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{x^2}{9-m}+\frac{y^2}{m-3}$=1的左、右焦点分别为F1、F2,点P在该椭圆上.
(1)求实数m的取值范围;
(2)若m=5,且|PF1|=3,求点P到x轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线C:x2-y2=2,记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的点E、F,若△OEF的面积为2$\sqrt{2}$,则直线l的方程为(  )
A.y=$\sqrt{2}$x+2B.y=-$\sqrt{2}$x+2C.y=$\sqrt{2}$x+2或y=-$\sqrt{2}$x-2D.y=$\sqrt{2}$x+2或y=-$\sqrt{2}$x+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数共有18个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.经过点(-4,3),且与原点的距离等于3的直线方程是24x+7y+75=0或y=3.

查看答案和解析>>

同步练习册答案