| A. | $\frac{245}{128}$ | B. | $\frac{509}{256}$ | C. | $\frac{1003}{512}$ | D. | $\frac{2013}{1024}$ |
分析 利用累加法先求出数列{an}的通项公式,利用数列的递推关系求出数列{bn}的通项公式,利用错位相减法进行求和即可.
解答 解:∵a1=1,an+1-an=2n(n∈N*),
∴a2-a1=2,
a3-a2=22,
a4-a3=23,
…
an-an-1=2n-1,
等式两边同时相加得:
an-a1=2+22+23+…2n-1,
即an=a1+2+22+23+…2n-1=1+2+22+23+…2n-1=$\frac{1-{2}^{n}}{1-2}$=2n-1,
bn=$\frac{{{{log}_2}(1+{a_n})}}{{1+{a_n}}}(n∈{N^*}$)=$\frac{lo{g}_{2}(1+{2}^{n}-1)}{1+{2}^{n}-1}$=$\frac{lo{g}_{2}{2}^{n}}{{2}^{n}}$=$\frac{n}{{2}^{n}}$,
则Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,①
则$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+$\frac{3}{{2}^{4}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,②
①-②得
$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$=1-($\frac{1}{2}$)n-$\frac{n}{{2}^{n+1}}$,
则Tn=2-$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$=2-$\frac{2+n}{{2}^{n}}$.
则T10=2-$\frac{12}{{2}^{10}}$=2-$\frac{3}{{2}^{8}}$=2-$\frac{3}{256}$=$\frac{509}{256}$.
故选:B
点评 本题主要考查数列通项公式的求解以及利用错位相减法进行求解,利用累加法求出数列的通项公式是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | (-2,3) | B. | (0,1) | C. | (-1,2) | D. | (2,-3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{\sqrt{6}}{2}$,2] | B. | [$\frac{\sqrt{6}}{2}$,$\sqrt{3}$] | C. | ($\sqrt{2}$,$\sqrt{3}$] | D. | (1,$\frac{\sqrt{6}}{2}$)∪[$\sqrt{3}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\sqrt{2}$x+2 | B. | y=-$\sqrt{2}$x+2 | C. | y=$\sqrt{2}$x+2或y=-$\sqrt{2}$x-2 | D. | y=$\sqrt{2}$x+2或y=-$\sqrt{2}$x+2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com