精英家教网 > 高中数学 > 题目详情
若一个动点到两个定点的距离之差的绝对值等于8,则动点M的轨迹方程为 (    )
A.B.
C.D.
C

试题分析:因为,由双曲线的定义可知,点的轨迹是以为焦点的双曲线。此时,即,所以点的轨迹方程是。故C正确。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.
(1)求椭圆C的方程和其“准圆”的方程.
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2使得l1,l2与椭圆C都只有一个交点,且l1,l2分别交其“准圆”于点M,N.
①当P为“准圆”与y轴正半轴的交点时,求l1,l2的方程;
②求证:|MN|为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线x2-y2=2若直线n的斜率为2 ,直线n与双曲线相交于A、B两点,线段AB的中点为P,
(1)求点P的坐标(x,y)满足的方程(不要求写出变量的取值范围);
(2)过双曲线的左焦点F1,作倾斜角为的直线m交双曲线于M、N两点,期中,F2是双曲线的右焦点,求△F2MN的面积S关于倾斜角的表达式。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,左、右两个焦点分别为,上顶点为正三角形且周长为6,直线与椭圆相交于两点.
(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线,点,过的直线交抛物线两点.
(1)若线段中点的横坐标等于,求直线的斜率;
(2)设点关于轴的对称点为,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.
(1)求抛物线的方程;
(2)过点作直线交抛物线于两点,求证: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知点是动点,且的三边所在直线的斜率满足
(1)求点的轨迹的方程;
(2)若是轨迹上异于点的一个点,且,直线交于点,问:是否存在点,使得的面积满足?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知椭圆的两个焦点分别为,且到直线的距离等于椭圆的短轴长.

(Ⅰ) 求椭圆的方程;
(Ⅱ) 若圆的圆心为(),且经过,是椭圆上的动点且在圆外,过作圆的切线,切点为,当的最大值为时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的一个焦点坐标为,则双曲线的渐近线方程为(    )
A.B.
C.D.

查看答案和解析>>

同步练习册答案