分析 4bsinA=$\sqrt{7}$a,由正弦定理可得:4sinBsinA=$\sqrt{7}$sinA,解得sinB.由a,b,c成等差数列,且公差大于0,可得2b=a+c,A<B<C.B为锐角,cosB=$\sqrt{1-si{n}^{2}B}$.
可得sinA+sinC=2sinB.设cosA-cosC=m>0,平方相加化简即可得出.
解答 解:在△ABC中,∵4bsinA=$\sqrt{7}$a,由正弦定理可得:4sinBsinA=$\sqrt{7}$sinA,sinA≠0,解得sinB=$\frac{\sqrt{7}}{4}$.
∵a,b,c成等差数列,且公差大于0,
∴2b=a+c,A<B<C.
∴B为锐角,cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{3}{4}$.
∴sinA+sinC=2sinB=$\frac{\sqrt{7}}{2}$.
设cosA-cosC=m>0,
平方相加可得:2-2cos(A+C)=${m}^{2}+\frac{7}{4}$,
∴2+2cosB=${m}^{2}+\frac{7}{4}$,
∴m2=$\frac{7}{4}$,
解得m=$\frac{\sqrt{7}}{2}$.
故答案为:$\frac{{\sqrt{7}}}{2}$.
点评 本题考查了正弦定理、等差数列的性质、和差公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 垂直 | B. | 共线 | C. | 不垂直 | D. | 以上都有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3×360°-315° | B. | -9×180°-45° | C. | -4×360°+315° | D. | -3×360°+45° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x+2)2+(y-1)2=12 | B. | (x-2)2+(y+1)2=12 | C. | (x-2)2+(y+1)2=3 | D. | (x+2)2+(y-1)2=3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com