精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=1,a2=
2
3
,且
1
an-1
+
1
an+1
=
2
an

(1)求an
(2)设bn=anan+1,求b1+b2+b3+…bn
(3)求证:a12+a22+a32+…+an2<4
(1)依题意知{
1
an
}
为等差数列,公差d=
1
a2
-
1
a1
=
1
2

1
an
=1+
1
2
(n-1)
,∴an=
2
n+1

(2)bn=anan+1=
4
(n+1)(n+2)
4(
1
n+1
-
1
n+2
)

∴b1+b2+…+bn=4[(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2
)]
=4(
1
2
-
1
n+2
) =
2n
n+2

(3)an2=
4
(n+1)2
4
n(n+1)
=4(
1
n+1
-
1
n+2
),
∴a12+a22+…+an2<4[(1-
1
2
) +(
1
2
-
1
3
)+…+(
1
n+1
-
1
n+2
)]
=4(1-
1
n+1
)<4.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an=
12
an-1+1(n≥2),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,则
lim
n→∞
(a1+a2+…+an)等于(  )
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=-60,an+1-an=3,(1)求数列{an}的通项公式an和前n项和Sn(2)问数列{an}的前几项和最小?为什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,对?n∈N*an+2an+3•2n,an+1≥2an+1,则a2=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)如果一个数列{an}对任意正整数n满足an+an+1=h(其中h为常数),则称数列{an}为等和数列,h是公和,Sn是其前n项和.已知等和数列{an}中,a1=1,h=-3,则S2008=
-3012
-3012

查看答案和解析>>

同步练习册答案