精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}满足b1=1,且点P(bn,bn+1)(n∈N*)在直线y=x+2上.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Dn
(Ⅲ)设cn=an•sin2
2
-bn•cos2
2
 (n∈N*)
,求数列{cn}的前2n项和T2n
(Ⅰ)当n=1,a1=2…(1分)
当n≥2时,an=Sn-Sn-1=2an-2an-1…(2分)
∴an=2an-1(n≥2),∴{an}是等比数列,公比为2,首项a1=2
an=2n…(3分)
又点P(bnbn+1) (n∈N*)在直线y=x+2上,∴bn+1=bn+2,
∴{bn}是等差数列,公差为2,首项b1=1,∴bn=2n-1…(5分)
(Ⅱ)∵anbn=(2n-1)×2n
Dn=1×21+3×22+5×23+7×24+…(2n-3)×2n-1+(2n-1)×2n
2Dn=1×22+3×23+5×24+7×25+…(2n-3)×2n+(2n-1)×2n+1
①-②得-Dn=1×21+2×22+2×23+2×24+…2×2n-(2n-1)×2n+1…(7分)
=2+2×
4(1-2n-1)
1-2
-(2n-1)×2n+1=2n+1(3-2n)-6
…(8分)
Dn=(2n-3)2n+1+6…(9分)
(Ⅲ)cn=
2n,n为奇数
-(2n-1),n为偶数
…(11分)
T2n=(a1+a3+…+a2n-1)-(b2+b4+…b2n
=2+23+…+22n-1-[3+7+…+(4n-1)]=
22n+1-2
3
-2n2-n
…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案