精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,P、M为空间任意两点,且
PM
=
PB1
+6
AA1
+7
BA
+4
A1D1
,则M点一定在平面
 
内.
考点:棱柱的结构特征,平面向量的基本定理及其意义
专题:空间位置关系与距离
分析:以A点为原点建立坐标系,设正方体边长为1,利用向量法能求出M点一定在平面A1BCD1内.
解答: 解:以A点为原点建立坐标系,
设正方体边长为1,
则BA=(-1,0,0),AA1=(0,0,1),
A1D1
=(0,1,0),
PM
=
PB1
+6
AA1
+7
BA
+4
A1D1
=(-7,4,6),
所以M=(-7,4,6)+(1,0,1)=(-6,4,7),
而平面A1BCD1的方程为x+z-1=0,
把点M的坐标代入满足条件,
所以M点一定在平面A1BCD1内.
点评:本题考查点的位置的确定,是基础题,解题时要注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)满足
a
=(x2,y),
b
=(x-
1
x
,-1)
,且
a
b
=-1
.如果存在正项数列{an}满足:a1=
1
2
n
i=1
f(ai)-n=
n
i=1
ai3-n2an(n∈N*)

(1)求数列{an}的通项;
(2)证明:
n
i=1
ai
i
<3

查看答案和解析>>

科目:高中数学 来源: 题型:

P为△ABC所在平面外一点,O为P在平面ABC上的射影.(1)若PA=PB=PC,则O点是△ABC的
 
心;(2)若PA⊥BC,PB⊥AC,则点O是△ABC的
 
心;(3)若PA,PB,PC两两互相垂直,则O点是△ABC的
 
心.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=-
1
3
x3+
1
2
x2+2ax
,若f(x)在(
2
3
,+∞)上存在单调递增区间,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行六面体ABCD-A1B1C1D1.AC1分别与平面A1BD、平面CB1D1交于E,F两点.给出以下命题:
①平面A1BD∥平面CB1D1
②若∠A1AD=∠A1AB=∠DAB,AD=AB=AA1,则直线A1D与CD1所成角为
π
3

③点E,F为线段AC1的两个三等分点;
④E为△A1BD的内心.
其中真命题的序号是
 
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax(x>0)
(2-a)x+
2
3
a(x≤0)
在R上为增函数,则a的取值范围是
 
(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是抛物线y2=4x上的动点,过P作抛物线准线的垂线,垂足为M、N是圆(x-2)2+(y-5)2=1上的动点,则|PM|+|PN|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用辗转相除法或更相减损术求得8251与6105的最大公约数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的单调函数,且对于任意x1、x2∈R都有f(x1+x2)=f(x1)•f(x2),若g(x)=log2f(x),则g(x)的图象可以是(  )
A、
B、
C、
D、

查看答案和解析>>

同步练习册答案