7£®Èçͼ£¬ÒÑÖªÁâÐÎABCDÓëÖ±½ÇÌÝÐÎABEFËùÔ򵀮½Ã滥Ïà´¹Ö±£¬ÆäÖÐBE¡ÎAF£¬AB¡ÍAF£¬AB=BE=$\frac{1}{2}$AF=2£¬¡ÏCBA=$\frac{¦Ð}{3}$£¬PΪDFµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºPE¡ÎÆ½ÃæABCD
£¨¢ò£©Çó¶þ½ÇD-EF-AµÄÓàÏÒÖµ£»
£¨¢ó£©ÉèGΪÏß¶ÎADÉÏÒ»µã£¬$\overrightarrow{AG}=¦Ë\overrightarrow{AD}$£¬ÈôÖ±ÏßFGÓëÆ½ÃæABEFËù³É½ÇµÄÕýÏÒֵΪ$\frac{\sqrt{39}}{26}$£¬ÇóAGµÄ³¤£®

·ÖÎö £¨¢ñ£©È¡ADµÄÖеãQ£¬Á¬½ÓPQ£¬BQ£¬Ö¤Ã÷PE¡ÎBQ£¬¼´¿ÉÖ¤Ã÷PE¡ÎÆ½ÃæABCD£®
£¨¢ò£©È¡ABÖеãO£¬Á¬½ÓCO£¬·Ö±ðÒÔOB£¬OM£¬OCËùÔÚÖ±ÏßΪx£¬y£¬zÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬Çó³öÆ½ÃæDEFµÄ·¨ÏòÁ¿£¬Æ½ÃæAEFµÄ·¨ÏòÁ¿£¬ÀûÓÃÏòÁ¿µÄÊýÁ¿»ýÇó½â¶þÃæ½ÇD-EF-AµÄÓàÏÒÖµ£®
£¨¢ó£©Çó³ö$\overrightarrow{FG}=£¨-¦Ë£¬-4£¬\sqrt{3}¦Ë£©$£¬Æ½ÃæABEFµÄ·¨ÏòÁ¿£¬ÉèÖ±ÏßFGÓëÆ½ÃæABEFËù³É½ÇΪ¦È£¬ÀûÓÃÊýÁ¿»ýÁгö·½³ÌÇó½â¼´¿É£®

½â´ð £¨±¾Ð¡ÌâÂú·Ö13·Ö£©
½â£º£¨¢ñ£©È¡ADµÄÖеãQ£¬Á¬½ÓPQ£¬BQ£¬ÔòPQ¡ÎAF¡ÎBE£¬ÇÒ$PQ=\frac{1}{2}AF=BE$£¬
ËùÒÔËıßÐÎBEPQΪƽÐÐËıßÐΣ¬¡­£¨2·Ö£©
ËùÒÔPE¡ÎBQ£¬ÓÖBQ?Æ½ÃæABCD£¬PE?Æ½ÃæABCD£¬
ÔòPE¡ÎÆ½ÃæABCD£®¡­£¨3·Ö£©
£¨¢ò£©È¡ABÖеãO£¬Á¬½ÓCO£¬ÔòCO¡ÍAB£¬ÒòÎªÆ½ÃæABCD¡ÍÆ½ÃæABEF£¬½»ÏßΪAB£¬
ÔòCO¡ÍÆ½ÃæABEF¡­£¨4·Ö£©
×÷OM¡ÎAF£¬·Ö±ðÒÔOB£¬OM£¬OCËùÔÚÖ±ÏßΪx£¬y£¬zÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬
Ôò$D£¨-2£¬0£¬\sqrt{3}£©£¬F£¨-1£¬4£¬0£©£¬E£¨1£¬2£¬0£©$¡­£¨5·Ö£©
ÓÚÊÇ$\overrightarrow{DF}=£¨1£¬4£¬-\sqrt{3}£©\overrightarrow{£¬EF}=£¨-2£¬2£¬0£©$£¬ÉèÆ½ÃæDEFµÄ·¨ÏòÁ¿$\overrightarrow m=£¨x£¬y£¬z£©$£¬
Ôò$\left\{\begin{array}{l}x+4y-\sqrt{3}z=0\\-2x+2y=0\end{array}\right.$Áîx=1£¬Ôò$y=1£¬z=\frac{5}{{\sqrt{3}}}$¡­£¨6·Ö£©

Æ½ÃæAEFµÄ·¨ÏòÁ¿$\overrightarrow n=£¨0£¬0£¬1£©$¡­£¨7·Ö£©
ËùÒÔ$cos\left?{\overrightarrow m£¬\overrightarrow n}\right£¾=\frac{{\frac{5}{{\sqrt{3}}}}}{{\sqrt{\frac{31}{3}}}}=\frac{{5\sqrt{31}}}{31}$¡­£¨8·Ö£©
ÓÖÒòΪ¶þÃæ½ÇD-EF-AΪÈñ½Ç£¬ËùÒÔÆäÓàÏÒֵΪ$\frac{{5\sqrt{31}}}{31}$£®    ¡­£¨9·Ö£©
£¨¢ó£©$A£¨-1£¬0£¬0£©£¬\overrightarrow{AD}=£¨-1£¬0£¬\sqrt{3}£©£¬\overrightarrow{AG}=£¨-¦Ë£¬0£¬\sqrt{3}¦Ë£©$£¬Ôò$G£¨-¦Ë-1£¬0£¬\sqrt{3}¦Ë£©$£¬$\overrightarrow{FG}=£¨-¦Ë£¬-4£¬\sqrt{3}¦Ë£©$£¬¶øÆ½ÃæABEFµÄ·¨ÏòÁ¿Îª$\overrightarrow m=£¨0£¬0£¬1£©$£¬
ÉèÖ±ÏßFGÓëÆ½ÃæABEFËù³É½ÇΪ¦È£¬
ÓÚÊÇ$sin¦È=\frac{{\sqrt{3}¦Ë}}{{\sqrt{16+4{¦Ë^2}}}}=\frac{{\sqrt{39}}}{26}$¡­£¨11·Ö£©
ÓÚÊÇ$¦Ë=\frac{{\sqrt{3}}}{3}$£¬$AG=\frac{{2\sqrt{3}}}{3}$£®¡­£¨13·Ö£©

µãÆÀ ±¾Ì⿼²é¶þÃæ½ÇµÄÆ½Ãæ½ÇµÄÇ󷨣¬Ö±ÏßÓëÆ½ÃæÊг¡¼ÛµÄÇ󷨣¬Ö±ÏßÓëÆ½ÃæÆ½ÐеÄÅжϣ¬¿¼²é¿Õ¼äÏëÏóÄÜÁ¦ÒÔ¼°¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖª¸´Êýz=m2£¨1+i£©-m£¨m+i£©£¨m¡ÊR£©£¬ÈôzÊÇʵÊý£¬ÔòmµÄֵΪ0»ò1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Ä³¸ßÖÐÓм×ÒÒÁ½¸ö°à¼¶½øÐÐÊýѧ¿¼ÊÔ£¬°´ÕÕ´óÓÚ»òµÈÓÚ90·ÖΪÓÅÐ㣬90·ÖÒÔÏÂΪ·ÇÓÅÐãͳ¼Æ³É¼¨ºó£¬µÃµ½ÈçϵÄÁÐÁª±í£º
ÓÅÐã·ÇÓÅÐã×ܼÆ
¼×°à104555
ÒÒ°à203055
ºÏ¼Æ3075105
£¨1£©ÇëÍê³ÉÉÏÃæµÄÁÐÁª±í£»
£¨2£©¸ù¾ÝÁÐÁª±íµÄÊý¾Ý£¬ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.05µÄǰÌáÏÂÈÏΪ³É¼¨Óë°à¼¶ÓйØÏµ£¿
²Î¿¼¹«Ê½£º
${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}£¨ÆäÖÐn=a+b+c+d$ΪÑù±¾ÈÝÁ¿£©
Ëæ»ú±äÁ¿K2µÄ¸ÅÂÊ·Ö²¼£º
p£¨K2¡Ýk£©0.250.150.100.050.0250.0100.0050.001
k1.3232.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®º¯Êýy=b+asinx£¨a£¼0£©µÄ×î´óֵΪ-1£¬×îСֵΪ-5£¬Ôòy=tan£¨3a+b£©xµÄ×îСÕýÖÜÆÚΪ£¨¡¡¡¡£©
A£®$\frac{2¦Ð}{9}$B£®$\frac{¦Ð}{9}$C£®$\frac{¦Ð}{3}$D£®$\frac{2¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®iΪÐéÊýµ¥Î»£¬Ôò¸´Êý$\frac{2-4i}{3-i}$µÄģΪ$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÏòÁ¿$\vec a=£¨{-k\;£¬\;4}£©$£¬$\vec b=£¨{k\;£¬\;k+3}£©$£¬ÇÒ$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪÈñ½Ç£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨Çëд³ÉÇø¼äÐÎʽ£©£¨-2£¬0£©¡È£¨0£¬6£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔڵȱÈÊýÁÐ{an}ÖУ¬a1=2£¬an=-64£¬Sn=-42£¬Ôò¹«±ÈqµÈÓÚ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªa£¾0£¬b£¾0£¬º¯Êýf£¨x£©=|x+a|+|2x-b|µÄ×îСֵΪ1£®
£¨1£©ÇóÖ¤£º2a+b=2£»
£¨2£©Èôa+2b¡Ýtabºã³ÉÁ¢£¬ÇóʵÊýtµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ä³Ð£¾ÙÐÐÁËÒÔ¡°ÖØÎÂʱ´ú¾­µä£¬³ªÏì»ØÉùàÚÁÁ¡±ÎªÖ÷ÌâµÄ¡°ºì¸è¡±¸èÓ½±ÈÈü£®¸ÃУ¸ßÒ»Äê¼¶ÓÐ1£¬2£¬3£¬4Ëĸö°à²Î¼ÓÁ˱ÈÈü£¬ÆäÖÐÓÐÁ½¸ö°à»ñ½±£®±ÈÈü½á¹û½ÒÏþ֮ǰ£¬¼×ͬѧ˵£º¡°Á½¸ö»ñ½±°à¼¶ÔÚ2°à¡¢3°à¡¢4°àÖС±£¬ÒÒͬѧ˵£º¡°2°àûÓлñ½±£¬3°à»ñ½±ÁË¡±£¬±ûͬѧ˵£º¡°1°à¡¢4°àÖÐÓÐÇÒÖ»ÓÐÒ»¸ö°à»ñ½±¡±£¬¶¡Í¬Ñ§Ëµ£º¡°ÒÒ˵µÃ¶Ô¡±£®ÒÑÖªÕâËÄÈËÖÐÓÐÇÒÖ»ÓÐÁ½È˵Ä˵·¨ÊÇÕýÈ·µÄ£¬ÔòÕâÁ½ÈËÊÇ£¨¡¡¡¡£©
A£®ÒÒ£¬¶¡B£®¼×£¬±ûC£®¼×£¬¶¡D£®ÒÒ£¬±û

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸