精英家教网 > 高中数学 > 题目详情
12、命题:“若空间两条直线a,b分别垂直平面α,则a∥b”学生小夏这样证明:
设a,b与面α分别相交于A、B,连接A、B,
∵a⊥α,b⊥α,AB?α…①
∴a⊥AB,b⊥AB…②
∴a∥b…③
这里的证明有两个推理,即:
①?②和②?③.老师评改认为小夏的证明推理不正确,这两个推理中不正确的是
②?③
分析:先根据直线与平面垂直的性质定理知:①?②是正确的;对于②?③,它依据的是:类比平面几何何中:垂直于同一条直线的两直线平行这个结论,在立体几何中,这是一个不正确的命题,故②?③是错误的,进而可得答案.
解答:解:根据直线与平面垂直的性质定理知:
①?②是正确的;
②?③时依据的是:垂直于同一条直线的两直线平行,这是一个不正确的命题,
故②?③是错误的.
故答案为:②?③.
点评:本题考查了类比推理,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).必须注意的是类比出来的结论不一定正确.必须通过证明才能确定正确与否.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、下列命题中,正确命题的序号为
④⑤

①经过空间任意一点都可作唯一一个平面与两条已知异面直线都平行;
②已知平面α,直线a和直线b,且a∩α=a,b⊥a,则b⊥α;
③有两个侧面都垂直于底面的四棱柱为直四棱柱;
④三棱锥中若有两组对棱互相垂直,则第三组对棱也一定互相垂直;
⑤三棱锥的四个面可以都是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下面的4个命题:
①若直线l⊥平面α,直线l∥平面β,则平面α⊥平面β;
②有两个侧面都是矩形的棱柱一定是直棱柱;
③过空间任意一点一定可以作一个平面和两条异面直线都平行;
④若平面α和平面β都垂直于平面γ,则平面α和平面β不一定平行.
其中,正确的命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:①在空间中,若OA∥O'A',OB∥O'B',则∠AOB=∠A'O'B';
②直角梯形是平面图形;
③{长方体}⊆{正四棱柱}⊆{直平行六面体}; 
④若a、b是两条异面直线,a?平面α,a∥平面β,b∥平面α,则α∥β;
⑤在四面体P-ABC中,PA⊥BC,PB⊥AC,则点A在面PBC内的射影为△PBC的垂心,其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源:2011年安徽省六校教育研究会高考数学试卷(文科)(解析版) 题型:解答题

下列命题中,正确命题的序号为   
①经过空间任意一点都可作唯一一个平面与两条已知异面直线都平行;
②已知平面α,直线a和直线b,且a∩α=a,b⊥a,则b⊥α;
③有两个侧面都垂直于底面的四棱柱为直四棱柱;
④三棱锥中若有两组对棱互相垂直,则第三组对棱也一定互相垂直;
⑤三棱锥的四个面可以都是直角三角形.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省连云港市东海高级中学高考数学三模试卷(解析版) 题型:解答题

下列命题中,正确命题的序号为   
①经过空间任意一点都可作唯一一个平面与两条已知异面直线都平行;
②已知平面α,直线a和直线b,且a∩α=a,b⊥a,则b⊥α;
③有两个侧面都垂直于底面的四棱柱为直四棱柱;
④三棱锥中若有两组对棱互相垂直,则第三组对棱也一定互相垂直;
⑤三棱锥的四个面可以都是直角三角形.

查看答案和解析>>

同步练习册答案