精英家教网 > 高中数学 > 题目详情
15.把椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的每个点的横坐标缩短到原来的$\frac{1}{4}$,纵坐标缩短到原来的$\frac{1}{3}$,则所得曲线方程x2+y2=1.

分析 设新曲线上任意一点的坐标为(x,y),则有(4x,3y)在椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1上,把(4x,3y)代入椭圆方程整理得到新曲线的方程.

解答 解:假设新曲线上任意一点的坐标为(x,y),则(4x,3y)在椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1上,
即$\frac{(4x)^{2}}{16}+\frac{(3y)^{2}}{9}=1$,整理得:x2+y2=1.
∴所得曲线方程为x2+y2=1.
故答案为:x2+y2=1.

点评 本题考查椭圆的简单性质,考查了图象上点的伸缩变换,关键是对题意的理解,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设M是△ABC所在平面内一点,且$\overrightarrow{BM}=\overrightarrow{MC}$,则$\overrightarrow{AM}$=(  )
A.$\overrightarrow{AB}-\overrightarrow{AC}$B.$\overrightarrow{AB}+\overrightarrow{AC}$C.$\frac{1}{2}(\overrightarrow{AB}-\overrightarrow{AC})$D.$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合P={(x,y)||x|+2|y|=5},Q={(x,y)|x2+y2=5},则集合P∩Q中元素的个数是(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过平面区域$\left\{\begin{array}{l}{x-y+2≥0}\\{y+a≥0}\\{x+y+2≤0}\end{array}\right.$,若z=x+2y的最小值为-8,则实数a=(  )
A.-6B.-5C.-4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有下列命题:
①若函数f(x)=3sin(ωx+φ)对于任意的x都有f($\frac{π}{6}$+x)=-f($\frac{π}{6}$-x),则f($\frac{π}{6}$)=0;
②正切函数在定义域上单调递增;
③曲线g(x)=x2与曲线f(x)=2x有三个公共点;
④若$\overrightarrow{a}$∥$\overrightarrow{b}$,则有且只有一个实数λ,使$\overrightarrow{b}$=λ$\overrightarrow{a}$;
⑤已知函数f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x)-1,x<0}\\{lo{g}_{a}x(a>0,a≠1),x>0}\end{array}\right.$的图象上关于y轴对称的点至少有3对,则实数a的取值范围是(0,$\frac{\sqrt{5}}{5}$).
其中正确命题的序号是①③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式x2-x-a2-a+1>0对x∈R恒成立,则实数a的取值范围为($-\frac{3}{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.平行四边形ABCD内接于椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,直线AB的斜率k1=1,则直线AD的斜率k2=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{1}{4}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°,求使向量(2$\overrightarrow{a}$+λ$\overrightarrow{b}$)与(λ$\overrightarrow{a}$-3$\overrightarrow{b}$)的夹角是直角的λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.盒子中放有3张形状和图案完全相同的刮奖券,每张奖券的两面刮开都有一定数额的奖金,一张两面都为1元,一张两面都为2元,还有一张为一面1元,另一面2元.
(Ⅰ)若小李从盒子中随机抽出一张奖券,将其放在桌面上,然后刮开向上的一面发现为2元,求该奖券另一面仍为2元的概率.
(Ⅱ)若小李和小张先后从盒子中各随机抽出一张奖券,并将奖券放在桌面上,刮开面朝上的部分并各自获得所抽奖券朝上一面刮开的金额,求2人所获得总奖金的概率分布,并求其期望.

查看答案和解析>>

同步练习册答案