分析 设新曲线上任意一点的坐标为(x,y),则有(4x,3y)在椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1上,把(4x,3y)代入椭圆方程整理得到新曲线的方程.
解答 解:假设新曲线上任意一点的坐标为(x,y),则(4x,3y)在椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1上,
即$\frac{(4x)^{2}}{16}+\frac{(3y)^{2}}{9}=1$,整理得:x2+y2=1.
∴所得曲线方程为x2+y2=1.
故答案为:x2+y2=1.
点评 本题考查椭圆的简单性质,考查了图象上点的伸缩变换,关键是对题意的理解,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{AB}-\overrightarrow{AC}$ | B. | $\overrightarrow{AB}+\overrightarrow{AC}$ | C. | $\frac{1}{2}(\overrightarrow{AB}-\overrightarrow{AC})$ | D. | $\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -6 | B. | -5 | C. | -4 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{1}{4}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com