精英家教网 > 高中数学 > 题目详情
如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,
.
(1)求证:
(2)若平面与平面所成的锐二面角的大小为,求线段的长度.
(1)证明过程详见解析;(2).

试题分析:本题主要考查线线垂直、线面垂直、面面垂直、二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,由已知得,所以利用线面平行的判定得平面,再利用线面垂直的性质,得;第二问,可以利用传统几何法求二面角的平面角,也可以利用向量法求平面和平面的法向量,利用夹角公式列出方程,通过解方程,求出线段的长度..
(1)证明:∵底面和侧面是矩形,

又∵
平面   3分
平面 .        6分
(2)

解法1:延长交于,连结
则平面平面
底面是矩形, 的中点,,∴连结,则
又由(1)可知
又∵
底面,∴平面             9
,连结,则是平面与平面即平面与平面所成锐二面角的平面角,所以
,∴
又易得,从而由,求得.                   12分
解法2:由(1)可知
又∵底面                                7分
的中点,以为原点,以所在直线分别为轴,建立空间直角坐标系如图.                                        8分

,则 
设平面的一个法向量

,得
,得                                                           9分
设平面法向量为,因为
 得,得.                  10分
由平面与平面所成的锐二面角的大小为
,解得. 即线段的长度为.  12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(1)求证:AB1⊥面A1BD;
(2)求二面角A-A1D-B的余弦值;
(3)求点C到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是平行四边形,,设中点,点在线段上且
(1)求证:平面
(2)设二面角的大小为,若,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,的中点,的中点.
(1)求证:平面平面
(2)求证:平面
(3)设为正方体棱上一点,给出满足条件的点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P -ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E 为侧棱PD的中点。
(1)证明:PB//平面EAC;
(2)若AD="2AB=2," 求直线PB与平面ABCD所成角的正切值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.

(1)求证:平面MOE∥平面PAC.
(2)求证:平面PAC⊥平面PCB.
(3)设二面角M—BP—C的大小为θ,求cos θ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,,顶点在底面上的射影恰为点
(1)证明:平面平面
(2 )若点的中点,求出二面角的余弦值.

(1)证明:平面平面
(2)若点的中点,求出二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是三条不同的直线,是两个不同的平面,下列命题为真命题的是(    )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·郑州模拟]设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n?γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.
①α∥γ,n?β;②m∥γ,n∥β;③n∥β,m?γ.
可以填入的条件有(  )
A.①或②B.②或③
C.①或③D.①或②或③

查看答案和解析>>

同步练习册答案