精英家教网 > 高中数学 > 题目详情
如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.

(1)求证:平面MOE∥平面PAC.
(2)求证:平面PAC⊥平面PCB.
(3)设二面角M—BP—C的大小为θ,求cos θ的值.
(1)见解析  (2)见解析  (3)
(1)因为点E为线段PB的中点,点O为线段AB的中点,所以OE∥PA.
因为PA?平面PAC,OE?平面PAC,
所以OE∥平面PAC.
因为OM∥AC,
因为AC?平面PAC,OM?平面PAC,
所以OM∥平面PAC.
因为OE?平面MOE,OM?平面MOE,OE∩OM=O,
所以平面MOE∥平面PAC.
(2)因为点C在以AB为直径的⊙O上,
所以∠ACB=90°,即BC⊥AC.
因为PA⊥平面BAC,BC?平面ABC,
所以PA⊥BC.
因为AC?平面PAC,PA?平面PAC,PA∩AC=A,
所以BC⊥平面PAC.
因为BC?平面PCB,
所以平面PAC⊥平面PCB.
(3)如图,以C为原点,CA所在的直线为x轴,CB所在的直线为y轴,建立空间直角坐标系C—xyz.

因为∠CBA=30°,PA=AB=2,
所以CB=2cos 30°=,AC=1.
延长MO交CB于点D.
因为OM∥AC,
所以MD⊥CB,MD=1+
CD=CB=.
所以P(1,0,2),C(0,0,0),B(0,,0),M.
所以=(1,0,2),=(0,,0).
设平面PCB的法向量m=(x,y,z).
因为
所以,即
令z=1,则x=-2,y=0.
所以m=(-2,0,1).
同理可求平面PMB的一个法向量n=(1,,1).
所以cos〈m,n〉==-.
因为二面角M—BP—C为锐二面角,所以cos θ=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图4,四边形为正方形,平面于点,交于点.

(1)证明:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,
.
(1)求证:
(2)若平面与平面所成的锐二面角的大小为,求线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013·辽宁高考)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:平面PAC⊥平面PBC.
(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,为正三角形,且平面平面

(1)证明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥
平面的中点.

(1)求证:∥平面
(2)求证:平面平面
(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条直线y=ax﹣2和3x﹣(a+2)y+1=0互相平行,则a等于(  )
A.1或﹣3B.﹣1或3C.1或3D.﹣1或﹣3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正三棱锥P­ABC中,D,E分别是AB,BC的中点,下列结论:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE,其中错误的结论个数是(    )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步练习册答案