精英家教网 > 高中数学 > 题目详情
如图,四棱锥P -ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E 为侧棱PD的中点。
(1)证明:PB//平面EAC;
(2)若AD="2AB=2," 求直线PB与平面ABCD所成角的正切值;
(1)详见解析;(2).

试题分析:(1)要证平面,根据线面平行的判定定理,只需证明平行于平面中的一条直线.连接,连接,因为分别为的中点,根据三角形的中位线的性质,可知,从而问题得证;
(2)设中点,连接,则,从而可得为直线与平面所成的角,进而可求与平面所成角正切值;
解:(1)连结BD交AC于O,连结EO,
因为O、E分别为BD、PD的中点, 所以EO//PB,    2分
,所以PB//平面EAC。 5分
(2)设N为AD中点,连接PN,则   6分
又面PAD⊥底面ABCD,所以,PN⊥底面ABCD        7分
所以为直线PB与平面ABCD所成的角,      8分
又AD=2AB=2,则PN=,              10分
所以tan=,  12分;所以PB与平面ABCD所成角正切为值  13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,
.
(1)求证:
(2)若平面与平面所成的锐二面角的大小为,求线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013·辽宁高考)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:平面PAC⊥平面PBC.
(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为异面直线,平面,平面.平面α与β外的直线满足,则( )
A.,且B.,且
C.相交,且交线垂直于D.相交,且交线平行于

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·深圳调研]如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是(  )
A.平面ABC⊥平面ABD
B.平面ABD⊥平面BDC
C.平面ABC⊥平面BDE,且平面ADC⊥平面BDE
D.平面ABC⊥平面ADC,且平面ADC⊥平面BDE

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013•重庆)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.
(1)求PA的长;
(2)求二面角B﹣AF﹣D的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条直线y=ax﹣2和3x﹣(a+2)y+1=0互相平行,则a等于(  )
A.1或﹣3B.﹣1或3C.1或3D.﹣1或﹣3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设m,n是两条不同的直线,α、β、γ是三个不同的平面,给出下列四个命题:
(1)若m⊥α,n∥α,则m⊥n
(2)若α∥β,β∥γ,m⊥α,则m⊥γ
(3)若m∥α,n∥α,则m∥n
(4)若α⊥γ,β⊥γ,则α∥β
其中真命题的序号是          

查看答案和解析>>

同步练习册答案