精英家教网 > 高中数学 > 题目详情
[2014·深圳调研]如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是(  )
A.平面ABC⊥平面ABD
B.平面ABD⊥平面BDC
C.平面ABC⊥平面BDE,且平面ADC⊥平面BDE
D.平面ABC⊥平面ADC,且平面ADC⊥平面BDE
C
因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC在平面ABC内,所以平面ABC⊥平面BDE.又由于AC?平面ACD,所以平面ACD⊥平面BDE,所以选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.
(1)证明:AC1⊥A1B;
(2)设直线AA1与平面BCC1B1的距离为,求二面角A1-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(1)求证:AB1⊥面A1BD;
(2)求二面角A-A1D-B的余弦值;
(3)求点C到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是平行四边形,,设中点,点在线段上且
(1)求证:平面
(2)设二面角的大小为,若,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P -ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E 为侧棱PD的中点。
(1)证明:PB//平面EAC;
(2)若AD="2AB=2," 求直线PB与平面ABCD所成角的正切值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,O为AC与BD的交点,AB^平面PAD,△PAD是正三角形,  
DC//AB,DA=DC=2AB.
(1)若点E为棱PA上一点,且OE∥平面PBC,求的值;
(2)求证:平面PBC^平面PDC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知
AB
=(2,2,1),
AC
=(4,5,3)
,则平面ABC的单位法向量为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同的直线,是两个不同的平面.则下列命题中正确的是(    )
A.m⊥,n,m⊥nB.=m,n⊥mn⊥
C.,m⊥,n∥m⊥nD.,m⊥,n∥m⊥n

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·郑州模拟]设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n?γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.
①α∥γ,n?β;②m∥γ,n∥β;③n∥β,m?γ.
可以填入的条件有(  )
A.①或②B.②或③
C.①或③D.①或②或③

查看答案和解析>>

同步练习册答案