精英家教网 > 高中数学 > 题目详情
已知函数f(x)的定义域为(-1,1),且,对任意x,y∈(-1,1),都有,数列{an}满足
(1)证明函数f(x)是奇函数;
(2)求数列{f(an)}的通项公式;
(3)令,证明:当n≥2时,
【答案】分析:(1)令x=y,则得f(0)=0,再令x=0,则得0-f(y)=f(-y),故函数f(x)是奇函数.
(2)令y=-x,可得f(x)=•f(),故有f(an)=•f()=f(an+1),故数列{f(an)}是公比等于2的等比数列,首项为  f()=1,由此求得f(an)的解析式.
(3)先求出a2=,易证n=2时,不等式成立,假设 ,先证明数列{an}为增数列,
可得 <an<1,故有|ai-ak+1|<.用放缩法证明n=k+1时,不等式也成立,命题得证.
解答:解:(1)证明:∵,任取x,y属于(-1,1)且x=y,则有f(x)-f(x)=f(0)=0.
令x=0,则 0-f(y)=f(-y),即 f(-y)=-f(y),
∴函数f(x)是奇函数.
(2)在中,令y=-x,可得 f(x)-f(-x)=f(),即 f(x)=•f().
∴f(an)=•f()=f(an+1),
故数列{f(an)}是公比等于2的等比数列,首项为  f()=1,
故f(an)=1×2n-1=2n-1
(3)由 可得 a2=

故当n=2时,|-|=|a1+a2-a1-|=||<==,故当n=2时,不等式成立.
假设当n=k时,不等式成立,即
=|+ak+1-Ak+1|<+|ak+1-Ak+1|
+||.
由于<1,故有an+1-an=>0,故数列{an}为增数列.
故当n≥2时,<an<1,∴|ai-ak+1|<,i=1,2,3…k.
+||
+||+||+…+||=+k×+=
故当n=k+1时,成立.
综上可得 成立.
点评:本题主要考查函数的奇偶性的判断方法,数列与不等式综合,利用数列的递推关系求通项公式,用数学归纳法和放缩法证明不等式,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的有(  )个.
①已知函数f(x)在(a,b)内可导,若f(x)在(a,b)内单调递增,则对任意的?x∈(a,b),有f′(x)>0.
②函数f(x)图象在点P处的切线存在,则函数f(x)在点P处的导数存在;反之若函数f(x)在点P处的导数存在,则函数f(x)图象在点P处的切线存在.
③因为3>2,所以3+i>2+i,其中i为虚数单位.
④定积分定义可以分为:分割、近似代替、求和、取极限四步,对求和In=
n
i=1
f(ξi)△x
中ξi的选取是任意的,且In仅于n有关.
⑤已知2i-3是方程2x2+px+q=0的一个根,则实数p,q的值分别是12,26.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知函数f(x)=x3-x,其图象记为曲线C.
(i)求函数f(x)的单调区间;
(ii)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积记为S1,S2.则
S1S2
为定值;
(Ⅱ)对于一般的三次函数g(x)=ax3+bx2+cx+d(a≠0),请给出类似于(Ⅰ)(ii)的正确命题,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案