精英家教网 > 高中数学 > 题目详情
18.若两条直线l1:x+(1+m)y=2-m,l2:2mx+4y=-16平行,则m=(  )
A.-2或1B.-2C.1D.$-\frac{2}{3}$

分析 化两直线方程为一般式,然后直接根据两直线平行则 $\left\{\begin{array}{l}{{{A}_{1}B}_{2}{{-A}_{2}B}_{1}=0}\\{{{A}_{1}C}_{2}{{-A}_{2}C}_{1}≠0}\end{array}\right.$,列式求解m的值即可.

解答 解:由两直线l1:x+(1+m)y=2-m,l2:2mx+4y=-16,
得l1:x+(1+m)y-2+m=0,l2:2mx+4y+16=0,
设A1=1,B1=1+m,C1=m-2,
A2=2m,B2=4,C2=16.
由 $\left\{\begin{array}{l}{{{A}_{1}B}_{2}{{-A}_{2}B}_{1}=0}\\{{{A}_{1}C}_{2}{{-A}_{2}C}_{1}≠0}\end{array}\right.$,得 $\left\{\begin{array}{l}{1×4-2m(1+m)=0}\\{1×16-2m(m-2)≠0}\end{array}\right.$,解得m=1,
∴当m=1时,有l1∥l2
故选:C.

点评 本题考查了直线的一般式方程与直线平行的关系,关键是熟记有关结论,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设x,y∈[$\frac{1}{3}$,1],则y+$\frac{x}{\sqrt{4{x}^{2}({y}^{2}+1)-4x+1}}$的最大值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知幂函数y=xa,a∈{-2,-1,-$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{2}$,1,2,3},其中奇函数的个数有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线2x+y+7=0的倾斜角为(  )
A.锐角B.直角C.钝角D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若一组数据x1,x2…xn的方差为9,则数据2x1+1,2x2+1,…2xn+1的方差为(  )
A.9B.18C.19D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设某总体是由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第3列和第4列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是11.
7816 6572 0802 6316 0702 4369 9728 1198
3204 9234 4935 8200 3623 4869 6938 7481.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算下列各式的值:
(1)($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)${\;}^{\frac{1}{2}}$+(0.2)-2×$\frac{3}{25}$;
(2)$-5{log_9}4+{log_3}\frac{32}{9}-{5^{{{log}_5}3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\frac{lnx}{x}-{x^2}+2ex-k$有且只有一个零点,则k的值为(  )
A.$e+\frac{1}{e^2}$B.$e+\frac{1}{e}$C.${e^2}+\frac{1}{e^2}$D.${e^2}+\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$|\overrightarrow a|=4,|\overrightarrow b|=3,(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=61$
(1)求$\overrightarrow a$与$\overrightarrow b$的夹角θ;
(2)若$\vec c=t\vec a+(1-t)\vec b$,且$\vec b•\vec c=0$,求t及$|{\vec c}|$.

查看答案和解析>>

同步练习册答案