1£®ÒÑÖª£¨$\sqrt{x}$-$\frac{2}{\sqrt{x}}$£©n¶þÏîÕ¹¿ªÊ½ÖУ¬µÚ4ÏîµÄ¶þÏîʽϵÊýÓëµÚ3ÏîµÄ¶þÏîʽϵÊýµÄ±ÈΪ8£º3
£¨1£©ÇónµÄÖµ£»
£¨2£©ÇóÕ¹¿ªÊ½ÖÐx3ÏîµÄϵÊý
£¨3£©¼ÆËãʽ×ÓC${\;}_{10}^{0}$-2C${\;}_{10}^{1}$+4C${\;}_{10}^{2}$-8C${\;}_{10}^{3}$+¡­+1024C${\;}_{10}^{10}$µÄÖµ£®

·ÖÎö £¨1£©Ö±½ÓÀûÓÃÌõ¼þ¿ÉµÃ$\frac{{C}_{n}^{3}}{{C}_{n}^{2}}$=$\frac{8}{3}$£¬ÇóµÃnµÄÖµ£®
£¨2£©ÔÚ¶þÏîÕ¹¿ªÊ½µÄͨÏʽÖУ¬ÁîxµÄÃÝÖ¸ÊýµÈÓÚ03£¬Çó³örµÄÖµ£¬¼´¿ÉÇóµÃÕ¹¿ªÊ½ÖÐx3ÏîµÄϵÊý£®
£¨3£©ÔÚ£¨$\sqrt{x}$-$\frac{2}{\sqrt{x}}$£©10¶þÏîÕ¹¿ªÊ½ÖУ¬Áîx=1£¬¿ÉµÃʽ×ÓC${\;}_{10}^{0}$-2C${\;}_{10}^{1}$+4C${\;}_{10}^{2}$-8C${\;}_{10}^{3}$+¡­+1024C${\;}_{10}^{10}$µÄÖµ£®

½â´ð ½â£º£¨1£©ÓɵÚ4ÏîµÄ¶þÏîʽϵÊýÓëµÚ3ÏîµÄ¶þÏîʽϵÊýµÄ±ÈΪ8£º3£¬¿ÉµÃ$\frac{{C}_{n}^{3}}{{C}_{n}^{2}}$=$\frac{8}{3}$£¬
»¯¼ò¿ÉµÃ$\frac{n-2}{3}$=$\frac{8}{3}$£¬ÇóµÃn=10£®
£¨2£©ÓÉÓÚ£¨$\sqrt{x}$-$\frac{2}{\sqrt{x}}$£©n¶þÏîÕ¹¿ªÊ½µÄͨÏʽΪ Tr+1=£¨-2£©r•${C}_{10}^{r}$•x5-r£¬
Áî5-r=3£¬ÇóµÃ r=2£¬¿ÉµÃÕ¹¿ªÊ½ÖÐx3ÏîµÄϵÊýΪ£¨-2£©2•${C}_{10}^{2}$=180£®
£¨III£©ÓɶþÏîʽ¶¨Àí¿ÉµÃ${£¨\sqrt{x}-\frac{2}{{\sqrt{x}}}£©^n}=\sum_{r=0}^{10}{{{£¨-2£©}^r}C_{10}^r{x^{5-r}}}$£¬
ËùÒÔÁîx=1µÃ$C_{10}^0-2C_{10}^1+4C_{10}^2-8C_{10}^3+¡­+1024C_{10}^{10}$=£¨1-2£©10=1£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶þÏîʽ¶¨ÀíµÄÓ¦Ó㬶þÏîÕ¹¿ªÊ½µÄͨÏʽ£¬×¢Òâ¸ù¾ÝÌâÒ⣬·ÖÎöËù¸ø´úÊýʽµÄÌØµã£¬Í¨¹ý¸ø¶þÏîʽµÄx¸³Öµ£¬ÇóÕ¹¿ªÊ½µÄϵÊýºÍ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚÈýÀâ×¶D-ABCÖУ¬ÒÑÖª¡÷BCDÊÇÕýÈý½ÇÐΣ¬AB¡ÍÆ½ÃæBCD£¬AB=BC£¬EΪBCµÄÖе㣬FÔÚÀâACÉÏ£¬ÇÒAF=3FC£¬MΪADÉÏÒ»µãÇÒAM=2DM£®
£¨1£©ÇóÖ¤£ºAC¡ÍÆ½ÃæDEF£»
£¨2£©ÇóÖ¤£ºBM¡ÎÆ½ÃæDEF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªiΪÐéÊýµ¥Î»£¬¼¯ºÏA={i2£¬0£¬i4£¬2}£¬¼¯ºÏB={x¡ÊR|2x£¾1}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{-1£¬2}B£®{1£¬2}C£®{0£¬1£¬2}D£®{2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÉèÕýÊýa£¬bÂú×㣺a+4b=2£¬Ôò$\frac{1}{a}+\frac{1}{b}$µÄ×îСֵΪ$\frac{9}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªa£¾0£¬b£¾0£¬Èôab=2a+b£¬ÔòabµÄ×îСֵÊÇ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®É躯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒ¶ÔÈÎÒâµÄx¡ÊRºãÓÐf£¨x+1£©=f£¨x-1£©£¬ÒÑÖªµ±x¡Ê[0£¬1]ʱf£¨x£©=£¨$\frac{1}{2}$£©1-x£¬Ôò
¢Ù2ÊǺ¯Êýf£¨x£©µÄÖÜÆÚ£»
¢Úº¯Êýf£¨x£©ÔÚ£¨1£¬2£©ÉÏÊǼõº¯Êý£¬ÔÚ£¨2£¬3£©ÉÏÊÇÔöº¯Êý£»
¢Ûº¯Êýf£¨x£©µÄ×î´óÖµÊÇ1£¬×îСֵÊÇ0£»
¢Üµ±x¡Ê£¨3£¬4£©Ê±£¬f£¨x£©=£¨$\frac{1}{2}$£©x-3£®
ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊǢ٢ڢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Ç°nÏîºÍSnÓëanÖ®¼äÂú×ãan=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$£¨n¡Ý2£©£®
£¨1£©Çóa2µÄÖµ£»
£¨2£©ÇóÊýÁÐ{Sn}µÄͨÏʽ£»
£¨3£©Éèf£¨n£©=$\frac{£¨1+{S}_{1}£©£¨1+{S}_{2}£©£¨1+{S}_{3}£©¡­£¨1+{S}_{n}£©}{\sqrt{2n+1}}$£¬Èô´æÔÚÕýÊýk£¬Ê¹f£¨n£©¡Ýk¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÇókµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{9-6x+{x}^{2}}$+$\sqrt{{x}^{2}+8x+16}$
£¨1£©½â²»µÈʽf£¨x£©¡Ýf£¨4£©£»
£¨2£©É躯Êýg£¨x£©=kx-3k£¬k¡ÊR£¬Èô²»µÈʽf£¨x£©£¾g£¨x£©ºã³ÉÁ¢£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Àà±ÈÍÆÀíÊÇÒ»°ãµ½ÌØÊâµÄÍÆÀí
B£®ÑÝÒïÍÆÀíµÄ½áÂÛÒ»¶¨ÊÇÕýÈ·µÄ
C£®ºÏÇéÍÆÀíµÄ½áÂÛÒ»¶¨ÊÇÕýÈ·µÄ
D£®ÑÝÒïÍÆÀíÔÚǰÌáºÍÍÆÀíÐÎʽ¶¼ÕýÈ·µÄǰÌáÏ£¬µÃµ½µÄ½áÂÛÒ»¶¨ÊÇÕýÈ·µÄ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸