精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:3ρ2=12ρcosθ-10(ρ>0).
(1)求曲线C1的普通方程
(2)曲线C2的方程为
x2
16
+
y2
4
=1
,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值.
分析:(1)直接把ρ2=x2+y2,x=ρcosθ代入极坐标方程,化简后得曲线C1的普通方程;
(2)利用参数方程设出椭圆
x2
16
+
y2
4
=1
上的任意一点Q,求出Q到圆的圆心的最小距离,减去圆的半径得答案.
解答:解:(1)由3ρ2=12ρcosθ-10(ρ>0),得
3x2+3y2=12x-10,即(x-2)2+y2=
2
3

∴曲线C1的普通方程为:(x-2)2+y2=
2
3

(2)依题意可设Q(4cosθ,2sinθ),
由(1)知圆C1的圆心坐标为(2,0),
|QC|=
(4cosθ-2)2+4sin2θ
=
12cos2θ-16cosθ+8

=2
3(cosθ-
2
3
)2+
2
3

∴当cosθ=
2
3
时,|QC|min=
2
6
3

|PQ|min=
6
3
点评:本题考查了简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,考查了两点间的距离公式,训练了利用配方法求最值,是中低档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案