分析 (1)利用极坐标与直角坐标的互化,直接求解点N的直角坐标为(1,1),求出曲线C1的直角坐标方程x2+y2=1,然后求解曲线C2的方程.
(2)将$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$代入方程(x-1)2+(y-1)2=1,设A、B两点对应的参数分别为t1、t2,利用韦达定理以及参数的几何意义求解即可.
解答 解:(1)点N的直角坐标为(1,1),曲线C1:ρ=1,即$\sqrt{{x^2}+{y^2}}=1$,即x2+y2=1,
曲线C2表示以N(1,1)为圆心,1为半径的圆,方程为(x-1)2+(y-1)2=1.
(2)将$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$代入方程(x-1)2+(y-1)2=1,得${(1-\frac{t}{2})^2}+{(\frac{{\sqrt{3}t}}{2}-1)^2}=1$,
即${t^2}-(1+\sqrt{3})t+1=0$,设A、B两点对应的参数分别为t1、t2,
则$\left\{\begin{array}{l}{t_1}+{t_2}=1+\sqrt{3}\\{t_1}•{t_2}=1\end{array}\right.$,易知t1>0,t2>0,
∴$\frac{1}{|PA|}+\frac{1}{|PB|}=\frac{|PA|+|PB|}{|PA|•|PB|}=\frac{{|{t_1}|+|{t_2}|}}{{|{t_1}|•|{t_2}|}}=\frac{{{t_1}+{t_2}}}{{{t_1}•{t_2}}}=1+\sqrt{3}$.
点评 本题考查参数方程以及极坐标方程与普通方程的互化,曲线的参数方程的几何意义,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 大学 | 甲 | 乙 | 丙 | 丁 |
| 人数 | 8 | 12 | 8 | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 45π | B. | 24π | C. | 32π | D. | 48π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 必要不充分条件 | B. | 充分不必要条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,2) | B. | [$\sqrt{2}$,+∞) | C. | (1,$\sqrt{2}$] | D. | [1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com