精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CDAPADBC相交于E点,FCE上一点,且DE2EF·EC.

(1)求证:∠P=∠EDF

(2)求证:CE·EBEF·EP

(3)若CEBE=3∶2,DE=6,EF=4,求PA的长.

【答案】(1)见解析(2)见解析(3)

【解析】(1)证明 ∵DE2EF·EC∴DE∶CEEF∶ED.

∵∠DEF是公共角,∴△DEF∽△CED.

∴∠EDF∠C.

∵CD∥AP∴∠C∠P.

∴∠P∠EDF.

(2)证明 ∵∠P∠EDF∠DEF∠PEA

∴△DEF∽△PEA.

∴DE∶PEEF∶EA.EF·EPDE·EA.

∵ADBC相交于点E

∴DE·EACE·EB.∴CE·EBEF·EP.

(3)∵DE2EF·ECDE6EF4∴EC9.

∵CE∶BE3∶2∴BE6.

∵CE·EBEF·EP∴9×64×EP.

解得:EP.

PBPEBEPCPEEC.

由切割线定理得:PA2PB·PC

PA2×

PA .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a,b,c∈R,证明:a2+b2+c2≥ab+ac+bc.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的程序框图表示的算法中,输入三个实数a,b,c,要求输出的x是这三个数中最大的数,那么在空白的判断框中,应该填入(

A.x>c
B.c>x
C.c>b
D.c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设α是空间中的一个平面,l,m,n是三条不同的直线,则下列命题中正确的是(
A.若mα,nα,l⊥m,l⊥n,则l⊥α
B.若mα,n⊥α,l⊥n,则l∥m
C.若l∥m,m⊥α,n⊥α,则l∥n
D.若l⊥m,l⊥n,则n∥m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每公里的费用总和最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆M:x2+y2﹣4x﹣2y+4=0
(1)若圆M的切线在x轴上的截距是y轴上的截距的2倍,求切线的方程;
(2)从圆外一点P(a,b),向该圆引切线PA,切点为A,且PA=PO,O为坐标原点,求证:以PM为直径的圆过异于M的定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A,B,C,D为平面内的四点,且A(1,3),B(2,﹣2),C(4,1).
(1)若 = ,求D点的坐标;
(2)设向量 = = ,若k +3 平行,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,过点的直线的倾斜角为45°,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线和曲线的交点为点.

(1)求直线的参数方程;

(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+b﹣a(a,b∈R).
(1)若关于x的不等式f(x)>0的解集为(﹣∞,﹣1)∪(3,+∞),求实数a,b的值;
(2)设a=2,若不等式f(x)>b2﹣3b对任意实数x都成立,求实数b的取值范围;
(3)设b=3,解关于x的不等式组

查看答案和解析>>

同步练习册答案