精英家教网 > 高中数学 > 题目详情
(2012•武汉模拟)函数f(x)=log2x-
1
x
的零点所在区间(  )
分析:由题意可知函数在(0,+∞)单调递增,且连续f(1)•f(2)<0,由根的存在性定理可求
解答:解:由题意可知函数在(0,+∞)单调递增,且连续
f(
1
2
)=log2
1
2
-2<0
,f(1)=log21-1<0,f(2)=log22-
1
2
>0

由根的存在性定理可得,f(1)•f(2)<0
故选:C
点评:本题主要考查函数的零点及函数的零点存在性定理:若函数f(x)在区间[a,b]上连续,且f(a)•f(b)<0,则函数f(x)在(a,b)上至少存在一个零点,函数与方程的思想得到了很好的体现.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•武汉模拟)如图是一正方体被过棱的中点M、N,顶点A和N、顶点D、C1的两上截面截去两个角后所得的几何体,则该几何体的正视图为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武汉模拟)天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907    966    191    925    271    932    812    458    569    683
431    257    393    027    556    488    730    113    537    989
据此估计,这三天中恰有两天下雨的概率近似为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武汉模拟)F1、F2是双曲线
x2
16
-
y2
20
=1
的焦点,点P在双曲线上,若点P到焦点F1的距离等于9,则点P到焦点F2的距离等于
17
17

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武汉模拟)已知函数f(x)=
lnx
x
-1

(1)求函数f(x)的单调区间;
(2)设m>0,求函数f(x)在[m,2m]上的最大值;
(3)证明:对?n∈N*,不等式ln(
2+n
n
)<
2+n
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武汉模拟)若复数z满足(2-i)z=1+i(i为虚数单位),则复数z在复平面内对应的点的坐标为
1
5
3
5
1
5
3
5

查看答案和解析>>

同步练习册答案