精英家教网 > 高中数学 > 题目详情
3.设f(x)满足关系式f(x)+2f(-x)=3x,求f(x).

分析 由题意可得f(-x)+2f(x)=-3x,联立消去f(-x)可得f(x)的解析式.

解答 解:∵f(x)+2f(-x)=3x,
∴f(-x)+2f(x)=-3x,
联立消去f(-x)可得f(x)=-3x

点评 本题考查函数解析式的求解的方程组的方法,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知二次方程(t2-1)x2-6(3t-1)x+72=0,根据下列条件,分别求出t的范围:
(1)两个根都大于零;
(2)两个根都小于零;
(3)一根大于零,一根小于零.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a∈R,写出关于x的方程ax2+2x+1=0至少有一个实数根的一个充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在公差为d的等差数列{an}中,已知a2+a3+a23+a24=48,求a13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知f(x+1)=x2-x,x∈[1,2],求 f(x);
(2)已知2f(x)+f($\frac{1}{x}$)=3x(x>0),求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等差数列{an}中,若a14+a15+a16=1,a15+a16+a17=5,则a16+a17+a18=(  )
A.4B.7C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,$\overrightarrow{c}$=k$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{d}$=$\overrightarrow{a}$-$\overrightarrow{b}$.
(1)若$\overrightarrow{c}$∥$\overrightarrow{d}$,求k的值,并判断$\overrightarrow{c}$、$\overrightarrow{d}$是否同向;
(2)若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,当k为何值时,$\overrightarrow{c}$⊥$\overrightarrow{d}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=4,且向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线.
(1)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,求(2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$);
(2)若向量k$\overrightarrow{a}$+$\overrightarrow{b}$与k$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(2x-1)=x2+1,则f(x)的解析式为(  )
A.f(x)=$\frac{{x}^{2}+2x+5}{4}$B.f(x)=$\frac{{x}^{2}-2x+5}{4}$C.f(x)=$\frac{{x}^{2}+2x+3}{2}$D.f(x)=$\frac{{x}^{2}-2x+3}{2}$

查看答案和解析>>

同步练习册答案