【题目】已知函数
为实数且
.
(1)设函数
.当
时,
在其定义域内为单调增函数,求
的取值范围;
(2)设函数
.当
时,在区间
(其中
为自然对数的底数)上是否存在实数
,使得
成立,若存在,求实数
的取值范围;若不存在,说明理由.
【答案】(1)
;(2)
.
【解析】
试题分析:(1)
在其定义域内为单调增函数,即为
在
上恒成立,分类参数
,利用均值不等式求出右边函数的最大值,即得
的范围;(2)
在区间
上存在实数
,使得
成立,即
得最小值小于零,讨论
的单调性,求出其最小值列参数
的不等式求出范围.
试题解析:(1)
,定义域为
.因为
,要使
为单调递增函数,须
恒成立,即
恒成立,即
恒成立,又
,所以
定义域
为单调递增函数时,
的取值范围是
.
(2)
时,
,且
,令
,得到
,若在区间
上存在一点
,使得
成立,即
在区间
上的最小值小于
.①当
,即
时,
恒成立,即
在区间
上单调递减,故
在区间
上的最小值为
,由
,得
即
.②当
,即
时,
若
,则
对
成立,所以
在区间
上单调递减,则
在区间
上的最小值为
,显然
在区间
上的最小值小于
不成立.
若
,即
时,则有
|
|
|
|
|
|
|
|
|
| 极小值 |
|
所以
在区间
上的最小值为
.由
,得
,解得
,即
.综上①②可知,当
时,在区间
上存在实数
, 使得
成立.
科目:高中数学 来源: 题型:
【题目】设有以下四个命题:
①底面是平行四边形的四棱柱是平行六面体;
②底面是矩形的平行六面体是长方体;
③直四棱柱是直平行六面体;
④棱台的相对侧棱延长后必交于一点.
其中正确命题的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节期间某超市搞促销活动,当顾客购买商品的金额达到一定数量后可以参加抽奖活动,活动规则为:从装有
个黑球,
个红球,
个白球的箱子中(除颜色外,球完全相同)摸球.
(Ⅰ)当顾客购买金额超过
元而不超过
元时,可从箱子中一次性摸出
个小球,每摸出一个黑球奖励
元的现金,每摸出一个红球奖励
元的现金,每摸出一个白球奖励
元的现金,求奖金数不少于
元的概率;
(Ⅱ)当购买金额超过
元时,可从箱子中摸两次,每次摸出
个小球后,放回再摸一次,每摸出一个黑球和白球一样奖励
元的现金,每摸出一个红球奖励
元的现金,求奖金数小于
元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了
人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表
组号 | 分组 | 回答正确 的人数 | 回答正确的人数 占本组的频率 |
第1组 | [15,25) |
| 0.5 |
第2组 | [25,35) | 18 |
|
第3组 | [35,45) |
| 0.9 |
第4组 | [45,55) | 9 | 0.36 |
第5组 | [55,65] | 3 |
|
![]()
(1)分别求出
的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】英州育才中学某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分別到气象局与市医院抄录了
至
月份每月
号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料(表):
日期 |
|
|
|
|
|
|
昼夜温差 |
|
|
|
|
|
|
就诊人数 |
|
|
|
|
|
|
该兴趣小组确定的研究方案是:先从这六组数据中选取
组,用剩下的
组数据求线性回归方程,再用被选取的
组数据进行检验.
(1)求选取的
组数据恰好是相邻两个月的概率;
(2)求选取的是
月与
月的两组数据,请根据
至
月份的数据,求出
关于
的线性回归方程
;
其中回归系数公式,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列现象:①连续两次抛掷同一骰子,两次都出现2点;②走到十字路口,遇到红灯;③异性电荷相互吸引;④抛一石块,下落.其中是随机现象的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知渡船在静水中速度
的大小为
,河水流速
的大小为
.如图渡船船头
方向与水流方向成
夹角,且河面垂直宽度为
.
(Ⅰ)求渡船的实际速度与水流速度的夹角;
(Ⅱ)求渡船过河所需要的时间.[提示:
]
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.
![]()
(1)求第二小组的频率,并补全这个频率分布直方图;
(2)求这两个班参赛的学生人数是多少;
(3)这两个班参赛学生的成绩的中位数应落在第几小组内.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com