| A. | f(x)=$\frac{1}{x}$-x | B. | f(x)=x3 | C. | f(x)=ln x | D. | f(x)=2x |
分析 由对任意x1,x2∈(0,+∞),都有(x1-x2)[f(x1)-f(x2)]<0,我们可得函数f(x)在区间(0,+∞)上为减函数,然后我们对答案中的四个函数逐一进行分析,即可得到答案.
解答 解:若对任意x1,x2∈(0,+∞),都有(x1-x2)[f(x1)-f(x2)]<0,
则f(x)在区间(0,+∞)上为减函数,
A中,f(x)=$\frac{1}{x}$-x在区间(0,+∞)上为减函数,满足条件,
B中,f(x)=x3在区间(0,+∞)上为增函数,不满足条件,
C中,f(x)=lnx在区间(0,+∞)上为增函数,不满足条件,
D中,f(x)=2x在区间(0,+∞)上为增函数,不满足条件,
故选:A.
点评 本题考查了函数的单调性问题,考查常见函数的性质,是一道基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{8}$ | B. | -$\frac{7}{8}$ | C. | -$\frac{7}{25}$ | D. | $\frac{7}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{2}+\frac{y^2}{4}=1$ | B. | $\frac{x^2}{4}+\frac{y^2}{3}=1$ | C. | $\frac{x^2}{3}+\frac{y^2}{2}=1$ | D. | $\frac{x^2}{4}+\frac{y^2}{2}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\sqrt{{x}^{2}}$,g(x)=x | B. | f(x)=log33x,g(x)=$\root{3}{{x}^{3}}$ | ||
| C. | f(x)=($\sqrt{x}$)2,g(x)=|x| | D. | f(x)=x,g(x)=x0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com