精英家教网 > 高中数学 > 题目详情
已知f(x)=log3(x2-2x),则函数f(x)的单调递减区间是
 
考点:对数函数的单调性与特殊点
专题:函数的性质及应用
分析:令函数t(x)=x2-2x>0,求得函数f(x)的定义域,且f(x)=log3t,本题即求f(x)在定义域上的减区间.再利用二次函数的性质可得t(x)在定义域上的减区间.
解答: 解:∵f(x)=log3(x2-2x),令函数t(x)=x2-2x>0,求得x<0,或x>2,
故函数f(x)的定义域为(-∞,0)∪(2,+∞),且f(x)=log3t,
故本题即求f(x)在(-∞,0)∪(2,+∞)上的减区间.
再利用二次函数的性质可得t(x)在(-∞,0)∪(2,+∞)上的减区间为(-∞,0),
故答案为:(-∞,0).
点评:本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合A={x∈N*|x2-3x-4≤0},B={x|x2-3x+2=0},若B?C⊆A,则满足条件的集合C的个数是(  )
A、8B、7C、4D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中A(3,-1),AB边上的中线CM所在直线方程为6x+10y-59=0,∠B的平分线方程BT为x-4y+10=0.
(1)求顶点B的坐标;
(2)求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=xlnx,g(x)=
ax2
2
,直线l:y=(k-3)x-k+2
(1)函数f(x)在x=e处的切线与直线l平行,求实数k的值
(2)若至少存在一个x0∈[1,e]使f(x0)<g(x0)成立,求实数a的取值范围
(3)设k∈Z,当x>1时f(x)的图象恒在直线l的上方,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,把矩阵B=
1
2
0
01
确定的压缩变换σ与矩阵A=
0-1
10
确定的旋转变换R90°进行复合,得到复合变换R90°.σ.
(I)求复合变换R90°.σ的坐标变换公式;
(Ⅱ)求圆C:x2+y2=1在复合变换R90°.σ的作用下所得曲线C′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n表示两条不同直线,α表示平面,下列说法正确的是(  )
A、若m∥α,n∥α,则m∥n
B、若m⊥α,m⊥n,则n∥α
C、若m∥α,m⊥n,则n⊥α
D、若m⊥α,n?α,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:

一艘船自西向东匀速航行,上午10时到达一座灯塔的南偏西75°距灯塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这艘船的航行速度为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=
ex-e-x
2
,C(x)=
ex+e-x
2
,下面正确的运算公式是(  )
①S(x+y)=S(x)C(y)+C(x)S(y)     
②S(x-y)=S(x)C(y)-C(x)S(y)
③2S(x+y)=S(x)C(y)+C(x)S(y)
④2S(x-y)=S(x)C(y)-C(x)S(y)
A、①②B、③④C、①④D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=
3
2
|F1F2|.
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.

查看答案和解析>>

同步练习册答案