精英家教网 > 高中数学 > 题目详情
20.在△ABC中,内角A、B、C的对边分别为a,b,c,已知b(cosA-2cosC)=(2c-a)cosB.
(1)求$\frac{sinA}{sinC}$的值;
(2)若cosB=$\frac{1}{4}$,b=2,求△ABC的面积S.

分析 (1)由正弦定理得:sinB(cosA-2cosC)=(2sinC-sinA)cosB,从而sinC=2sinA,由此能求出$\frac{sinA}{sinC}$的值.
(2)推导出c=2a,由余弦定理得a=1,c=2,由此能求出△ABC的面积.

解答 解:(1)∵在△ABC中,内角A、B、C的对边分别为a,b,c,
b(cosA-2cosC)=(2c-a)cosB.
∴由正弦定理得:sinB(cosA-2cosC)=(2sinC-sinA)cosB,
化简,得:sin(A+B)=2sin(B+C),
∴sinC=2sinA,
∴$\frac{sinA}{sinC}$=$\frac{1}{2}$.
(2)∵$\frac{sinA}{sinC}$=$\frac{1}{2}$,∴c=2a,
由余弦定理得:b2=a2+c2-2accosB,
∵cosB=$\frac{1}{4}$,b=2,
∴4=a2+4a2-a2.解得a=1,c=2,
∵cosB=$\frac{1}{4}$,0<B<π,∴sinB=$\sqrt{1-(\frac{1}{4})^{2}}$=$\frac{\sqrt{15}}{4}$,
∴△ABC的面积S=$\frac{1}{2}acsinB$=$\frac{1}{2}×1×2×\frac{\sqrt{15}}{4}$=$\frac{\sqrt{15}}{4}$.

点评 本题考查三角形中两角正弦值的比值的求法,考查三角形面积的求法,考查三角形面积、正弦定理、余弦定理、诱导公式、同角三角函数关系式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在两个空白框中,可以分别填入(  )
A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列4个命题:
①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;
②四边形ABCD为长方形,AB=2,BC=1,O为AB中点,在长方形ABCD内随机取一点P,取得的P点到O的距离大于1的概率为1-$\frac{π}{2}$;
③把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位,可得到y=3sin2x的图象;
④已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为$\widehat{y}$=1.23x+0.08.
其中正确的命题有③④.(填上所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设O为△ABC的外心,且5$\overrightarrow{OA}+12\overrightarrow{OB}+13\overrightarrow{OC}=\overrightarrow{0}$,则△ABC的内角C的值为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C所对的边分别是a,b,c,若sinA=sinC,b2-a2=ac,则∠A=(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,内角A,B,C的对边分别为a,b,c,已知bsinA=2csinB,b=2$\sqrt{6}$,cosA=$\frac{\sqrt{6}}{4}$.
(Ⅰ)求c;
(Ⅱ)求cos(2A+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在(x-$\frac{3}{\sqrt{x}}$)6的二项展开式中,常数项为1215.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四边形ABCD为平行四边形,若$\overrightarrow{AB}$=(2,3),$\overrightarrow{AD}$=(-1,2),则$\overrightarrow{AC}$+$\overrightarrow{BD}$=(  )
A.(-2,4)B.(4,6)C.(-6,-2)D.(-1,9)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为了降低能源损耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c(单位:万元)与隔热层厚度x(单位:cm)满足关系c(x)=$\frac{k}{2x+5}$(0≤x≤10),若不建隔热层,每年能源消耗为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和
(Ⅰ)求k的值及f(x)的表达式
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小?并求最小值.

查看答案和解析>>

同步练习册答案