精英家教网 > 高中数学 > 题目详情

函数数学公式(x≤-2)的反函数为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:首先根据由 解出x,根据反函数定义,将x、y互换,再由函数 函数(x≤-2)求其值域,即为反函数的定义域,问题得解.
解答:由 解得:
即:
(x≤-2)
∴y≥
∴函数(x≤-2)的反函数为
故选A.
点评:本题属于基础性题,解题思路清晰,解题方向明确,注意对反函数概念的灵活运用;求反函数的解题过程一般分为三个层次,其一是把原函数看做方程利用指对互化解出x;其二是根据反函数定义x、y进行互换,其三是定义域的确定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=
px+1
x+1
,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=
1
2
(cn+
n
cn
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=
-1
anSn2
,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,x0)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=
3x+a
x+b
图象上有两个关于原点对称的不动点,求实数a,b应满足的条件;
(2)设点P(x,y)到直线y=x的距离d=
|x-y|
2
.在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A1,A2,P为函数f(x)图象上的另一点,其纵坐标yP>3,求点P到直线A1A2距离的最小值及取得最小值时点P的坐标.
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,请给予证明;若不正确,请举一反例.若地方不够,可答在试卷的反面.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)存在反函数y=f-1(x),由函数y=f(x)确定数列{an},an=f(n),由函数y=f-1(x)确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若数列{bn}是函数f(x)=
x+1
2
确定数列{an}的反数列,试求数列{bn}的前n项和Sn
(2)若函数f(x)=2
x
确定数列{cn}的反数列为{dn},求{dn}的通项公式;
(3)对(2)题中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)对任意的正整数n恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:0117 模拟题 题型:解答题

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”。
(1)若函数f(x)=2确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式对任意的正整数n恒成立,求实数a的取值范围;
(3)设(λ为正整数),若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn}, 求数列{tn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.

(1)已知函数f(x)=2的反函数为f-1(x)=(x≥0),则由函数f(x)=2确定的数列{an}的反数列为{bn},求{bn}的通项公式;不等式++…+≥1-2a对任意的正整数n恒成立,求实数a的范围;

(2)设函数y=3x确定的数列为{cn},{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}的前n项和Sn.

查看答案和解析>>

同步练习册答案