精英家教网 > 高中数学 > 题目详情
已知f(x)是可导的函数,且
lim
x→0
f(x+2)-f(2)
2x
=-2
,则曲线y=f(x)在点(2,2)处的切线的一般式方程是
4x+y-10=0
4x+y-10=0
分析:先根据
lim
x→0
f(x+2)-f(2)
2x
=-2
求出函数f(x)在x=2处的极限,也即函数在x=2处的导数,而函数在点(2,2)处的切线的斜率即为该点处的导数,再用点斜式方程写出直线方程即可
解答:解:∵
lim
x→0
f(x+2)-f(2)
2x
=-2
,∴
1
2
lim
x→0
f(x+2)-f(2)
x
=-2

lim
x→0
f(x+2)-f(2)
x
=-4
,∴f′(2)=-4
∴曲线y=f(x)在点(2,2)处的切线的斜率为-4,
切线方程为y=-4x+10,化为一般式为4x+y-10=0
故答案为4x+y-10=0
点评:本题主要考察了函数的导数与切线的斜率之间的关系,以及直线方程的几种形式之间的转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是可导的函数,且f′(x)<f(x)对于x∈R恒成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宁波模拟)已知f(x)是可导的偶函数,且
lim
x→0
f(2+x)-f(2)
2x
=-1
,则曲线y=f(x)在(-2,1)处的切线方程是
y=2x+5
y=2x+5

查看答案和解析>>

科目:高中数学 来源:宁波模拟 题型:填空题

已知f(x)是可导的偶函数,且
lim
x→0
f(2+x)-f(2)
2x
=-1
,则曲线y=f(x)在(-2,1)处的切线方程是______.

查看答案和解析>>

科目:高中数学 来源:2013年浙江省杭州市重点高中高考命题比赛数学参赛试卷14(理科)(解析版) 题型:选择题

已知f(x)是可导的函数,且f′(x)<f(x)对于x∈R恒成立,则( )
A.f(1)<ef(0),f(2013)>e2013f(0)
B.f(1)>ef(0),f(2013)>e2013f(0)
C.f(1)>ef(0),f(2013)<e2013f(0)
D.f(1)<ef(0),f(2013)<e2013f(0)

查看答案和解析>>

同步练习册答案