精英家教网 > 高中数学 > 题目详情
15.已知复数z1=3-i,|z2|=2,则|z1+z2|的最大值为$2+\sqrt{10}$.

分析 利用复数的几何意义进行求解即可.

解答 解:|z1+z2|=|3-i+z2|=|z2-(-3+i)|,
∵|z2|=2,∴z2的轨迹是以圆点为圆心,2为半径的圆,
z=-3+i对应的点的坐标为A(-3,1),
则|OA|=$\sqrt{(-3)^{2}+1}$=$\sqrt{10}$,
则|z1+z2|的最大值为$2+\sqrt{10}$,
故答案为:$2+\sqrt{10}$.

点评 本题主要考查复数的几何意义,利用圆的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知点列(an,an+1)(n∈N*)在函数f(x)=-$\frac{1}{x+2}$的图象上,a1=f(0)且bn=$\frac{1}{{a}_{n}+1}$.
(1)求b1,b2,b3,b4
(2)根据以上的结果猜想bn的表达式,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.比较大小:0.32.1< 2.10.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系中,O为坐标原点,A、B、C三点满足$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$.
(1)求证:A、B、C三点共线;
(2)已知A(1,cosx)、B(2cos2$\frac{x}{2}$,cosx),x∈[0,$\frac{π}{2}$],若f(x)=$\overrightarrow{OA}$•$\overrightarrow{OC}$-(2m+$\frac{2}{3}$)|$\overrightarrow{AB}$|的最小值为-1,求实数m值.
(3)若点A(2,0),在y轴正半轴上是否存在点B满足${\overrightarrow{OC}}^{2}$=$\overrightarrow{AC}$•$\overrightarrow{CB}$,若存在求出点B;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知整数n≥4,集合M={1,2,3,…,n}的所有3个元素的子集记为A1,A2,…,${A_{C_n^3}}$.当n=5时,求集合A1,A2,…,${A_{C_5^3}}$中所有元素的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法正确的是(  )
A.对于相关系数r来说,|r|≤1,|r|越接近0,相关程度越大;|r|越接近1,相关程度越小
B.对于相关系数r来说,|r|≥1,|r|越接近1,相关程度越大;|r|越大,相关程度越小
C.对于相关系数r来说,|r|≤1,|r|越接近1,相关程度越大;|r|越接近0,相关程度越小
D.对于相关系数r来说,|r|≥1,|r|越接近1,相关程度越小;|r|越大,相关程度越大

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线x-2y=2与3x-y+6=0之间的夹角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图所示的流程图是将一系列指令和问题用框图的形式排列而成的.阅读下面的流程图,并回答下列问题.若b>c>a,则输出的数是b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若cosα=-$\frac{1}{3}$,则$sin({\frac{3π}{2}-α})$=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案