分析 $\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{2{n}^{2}+12n+10}{3{n}^{2}+12n}$,作差(3n2+12n)-(2n2+12n+10)=n2-10,即可比较出大小关系.
解答 解:$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{(n+1)(n+5)(\frac{2}{3})^{n+1}}{n(n+4)(\frac{2}{3})^{n}}$=$\frac{2{n}^{2}+12n+10}{3{n}^{2}+12n}$.
(3n2+12n)-(2n2+12n+10)
=n2-10,
∴当n=1,2,3时,$\frac{{a}_{n+1}}{{a}_{n}}$>1,an+1>an,即a1<a2<a3<a4;
当n≥4时,$\frac{{a}_{n+1}}{{a}_{n}}$<1,即an+1<an,即a4>a5>a6>….
∴当n=4时,数列{an}有最大项a4.
点评 本题考查了数列的单调性,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 奇函数 | B. | 偶函数 | C. | 既奇又偶函数 | D. | 非奇非偶函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com