| A. | AB+BC有最大值 | B. | AB+BC有最小值 | C. | AE+DC有最大值 | D. | AE+DC有最小值 |
分析 取AC的中点O,连接OB,OE,则OB⊥AC,证明AD⊥平面BOE,确定$\frac{1}{AE}$=$\frac{CD}{2}$,利用基本不等式,即可得出结论.
解答
解:取AC的中点O,连接OB,OE,则OB⊥AC,
∵DC⊥平面ABC,∴DC⊥OB,
∵DC∩AC=C,
∴OB⊥平面ADC,
∴OB⊥AD,
∵BE⊥AD,OB∩BE=B,
∴AD⊥平面BOE,
∴AD⊥OE,
∴∠AEO=∠CAD,
∴$\frac{1}{AE}$=$\frac{CD}{2}$,
∴AE=$\frac{2}{CD}$,
∴AE+CD=CD+$\frac{2}{CD}$≥2$\sqrt{2}$,当且仅当CD=$\sqrt{2}$时,AE+DC有最小值,
故选D.
点评 本题考查线面垂直的证明,考查基本不等式的运用,确定AE,CD的关系是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,4] | B. | [-4,1] | C. | (0,1] | D. | (0,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题p,q都正确 | B. | 命题p正确,命题q不正确 | ||
| C. | 命题p,q都不正确 | D. | 命题q不正确,命题p正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 奇函数,且在(0,2)上是增函数 | B. | 奇函数,且在(0,2)上是减函数 | ||
| C. | 偶函数,且在(0,2)上是增函数 | D. | 偶函数,且在(0,2)上是减函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com