【题目】已知圆
:
过椭圆
:
(
)的短轴端点,
,
分别是圆
与椭圆
上任意两点,且线段
长度的最大值为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
作圆
的一条切线交椭圆
于
,
两点,求
的面积的最大值.
【答案】(Ⅰ)
(Ⅱ)1.
【解析】试题分析: (Ⅰ)根据椭圆几何性质得线段
长度的最大值为
,且
,解出
,得椭圆
的方程;(Ⅱ)利用点斜式设直线方程,与椭圆方程联立,结合韦达定理及弦长公式可得底边
长(用斜率及
表示);利用点到直线距离公式得三角形的高(用斜率及
表示);根据圆心到切线距离等于半径得斜率与
关系,代入面积公式并化简得关于
的函数关系式,最后利用基本不等式求最值.
试题解析:解:(Ⅰ)∵圆
过椭圆
的短轴端点,∴
,又∵线段
长度的最大值为3,
∴
,即
,
∴椭圆
的标准方程为
.
(Ⅱ)由题意可设切线
的方程为
,即
,则
,得
.①
联立得方程组
消去
整理得
.
其中
,
设
,
,则
,
,
则
.②
将①代入②得
,∴
,
而
,等号成立当且仅当
,即
.
综上可知:
.
科目:高中数学 来源: 题型:
【题目】已知⊙C:x2+y2+2x-4y+1=0.
(1)若⊙C的切线在x轴、y轴上截距相等,求切线的方程.
(2)从圆外一点P(x0,y0)向圆引切线PM,M为切点,O为原点,若|PM|=|PO|,求使|PM|最小的P点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:f(x)=2/(x-m)在区间(1,+∞)上是减函数;;命题q:2x-1+2m>0对任意x∈R恒成立.若(
p)∧q为真,求实数m的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(m,n∈R)在x=1处取得极值2.
(1)求f(x)的解析式;
(2)k为何值时,方程f(x)-k=0只有1个根
(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中, AB=AC=AA1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.
(Ⅰ)求证:PN⊥AM;
(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角
最大.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(其中
为常数,
).(Ⅰ)求函数
的单调区间;(Ⅱ)当
时,是否存在实数
,使得当
时,不等式
恒成立?如果存在,求
的取值范围;如果不存在,请说明理由(其中
是自然对数的底数,
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电子元件厂对一批新产品的使用寿命进行检验,并且厂家规定使用寿命在
为合格品,使用寿命超过500小时为优质品,质检科抽取了一部分产品做样本,经检测统计后,绘制出了该产品使用寿命的频率分布直方图(如图):
![]()
(1)根据频率分布直方图估计该厂产品为合格品或优质品的概率,并估计该批产品的平均使用寿命;
(2)从这批产品中,采取随机抽样的方法每次抽取一件产品,抽取4次,若以上述频率作为概率,记随机变量
为抽出的优质品的个数,列出
的分布列,并求出其数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com