精英家教网 > 高中数学 > 题目详情
已知直线l过抛物线y=2x2-4x+5的顶点,且倾斜角是α,cosα=
1
3
,求直线l的方程.
考点:直线与圆锥曲线的关系
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:求出抛物线的顶点,设所求直线的斜率为k,则k=tanα,运用同角的基本关系式,即可得到斜率,再由点斜式方程,即可得到所求方程.
解答: 解:由于y=2x2-4x+5即有y=2(x-1)2+3,
则抛物线的顶点坐标是P(1,3),
设所求直线的斜率为k,则k=tanα,
由于cosα=
1
3
,则sinα=
2
2
3
,即tanα=2
2

则k=2
2

故所求直线方程是y-3=2
2
(x-1)即2
2
x-y-2
2
+3=0.
点评:本题考查抛物线的性质和方程,考查直线的斜率,考查同角的基本关系式,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线(m+2)x+3y+3=0与直线x+(2m-1)y+m=0平行,则实数m=(  )
A、-
5
2
或1
B、1
C、1或2
D、-
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足:对称轴为x=-1,且x∈R时x2+x+5≤f(x)≤2x2+5x+9恒成立.
(1)求f(-2)的值;
(2)求函数f(x)的解析式;
(3)已知函数f(x)-kx的图象与x轴交于A,B两点,O为坐标原点,问是否存在实数k满足
AB
=2
OA
?如果存在,求出k的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,棱AB=1,点E、F分别是AB、BC的中点.
(Ⅰ)求证:EF⊥BD1
(Ⅱ)求三棱锥B1-BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直三棱柱ABCA1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.求证:
(1)B1D⊥平面ABD;
(2)平面EGF∥平面ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象如图所示,f′(x)是f(x)的导函数,则下列数值排序正确的是(  )
A、0<f′(2)<f′(3)<f(3)-f(2)
B、0<f′(3)<f(3)-f(2)<f′(2)
C、0<f′(3)<f′(2)<f(3)-f(2)
D、0<f(3)-f(2)<f′(2)<f′(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P(-1,-1)在圆x2+y2+4mx-2y+5m=0的外部,则实数m的取值范围为(  )
A、(-4,+∞)
B、(-∞,
1
4
)∪(1,+∞)
C、(-4,
1
4
)∪(1,+∞)
D、(
1
4
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数
(1)y=x4-
5
x2

(2)y=xtanx;
(3)y=(x+1)(x+2)(x+3)
(4)y=lgx-2x

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组中两个函数是同一函数的是(  )
A、f(x)=
4x4
 g(x)=(
4x
4
B、f(x)=x  g(x)=
3x3
C、f(x)=1  g(x)=x0
D、f(x)=
x2-4
x+2
  g(x)=x-2

查看答案和解析>>

同步练习册答案