精英家教网 > 高中数学 > 题目详情
将一颗骰子先后抛掷2次,观察向上的点数,求:
(1)两数之和为5的概率;
(2)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)满足x2+y2小于15的概率.
考点:古典概型及其概率计算公式
专题:概率与统计
分析:(1)由题意知本题是一个古典概型,试验包含的所有事件是将一颗骰子先后抛掷2次,共有含有6×6个等可能基本事件,满足条件的事件中含有4个基本事件,根据古典概型公式得到结果.
(2)由题意知本题是一个古典概型,试验发生包含的所有事件总数为36,满足条件的事件可以通过列举得到事件数,根据古典概型公式得到结果.
解答: 解:(1)由题意知本题是一个古典概型,
试验包含的所有事件是将一颗骰子先后抛掷2次,共有含有6×6=36个等可能基本事件
记“两数之和为5”为事件A,
则事件A中含有4个基本事件,
∴P(A)=
4
36
=
1
9

即两数之和为5的概率为
1
9

(2)由题意知本题是一个古典概型,
试验包含的所有事件总数为36,
满足条件的事件有(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果,
记点(x,y)在圆x2+y2<15的内部记为事件C,
∴P(C)=
8
36
=
2
9

即点(x,y)在圆x2+y2<15的内部的概率
2
9
点评:本题是一个古典概型问题,这种问题在高考时可以作为文科的一道解答题,古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件.是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的左右焦点分别为F1,F2,过左焦点F1作直线l与双曲线左右两支分别交于A、B两点,若△ABF2为正三角形,则双曲线的渐近线方程为(  )
A、±
6
x+y=0
B、x±
6
y=0
C、
3
x±y=0
D、x±
3
y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-x.
(1)当a=1时,求f(x)的极值;
(2)若f(x)≤a对x∈[1,+∞]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z的共轭复数为
.
z
,已知(1+2i)
.
z
=4+3i,
(1)求复数z及
z
.
z

(2)求满足|z1-1|=|z|的复数z1对应的点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

下表给出了从某校500名12岁男生中用简单随机抽样得出的120人的身高资料(单位:厘米):
分组 人数 频率
[122,126) 5 0.042
[126,130) 8 0.067
[130,134) 10 0.083
[134,138) 22 0.183
[138,142) y
[142,146) 20 0.167
[146,150) 11 0.092
[150,154) x 0.050
[154,158) 5 0.042
合计 120 1.00
(1)在这个问题中,总体是什么?
(2)求表中x与y的值,画出频率分布直方图及频率分布折线图;
(3)试计算身高在146~154cm的总人数约有多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2-3x在x=±1处取得极值,求函数f(x)以及f(x)的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中点P为y=f′(x)的图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.
(1)求曲线段
ABC
与x轴所围成的区域的面积
(2)若|AC|=
π
3
,点P的坐标为(0,
3
3
2
),且ω>0,0<ω<
π
2
,求y=f(x)在区间[0,
π
3
]的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项的和Sn=
1
2
n2+
1
2
n.
(1)求数列{an}的通项公式;
(2)已知n∈N*,证明:2a1+4a2+8a3+…+2nan=(n-1)2n+1+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

若m>1,在约束条件
x-y≤0
mx-y≥0
x+y-1≤0
下,目标函数z=x+my的最大值小于2,则m的取值范围是
 

查看答案和解析>>

同步练习册答案