精英家教网 > 高中数学 > 题目详情
8、在矩形ABCD中,AB=3,AD=4,P在AD上运动,设∠ABP=θ,将△ABP沿BP折起,使得平面ABP垂直于平面BPDC,AC长最小时θ的值为
45°
分析:折叠问题要注意变与不变,观察图形将AC的长度用已知的量AB,AD,θ的三角函数表示出来.再根据其形式来进行运算求值.
解答:解:过A作AH⊥BP于H,连CH,∴AH⊥平面BCDP.
∴在Rt△ABH中,AH=3sinθ,BH=3cosθ.
在△BHC中,CH2=(3cosθ)2+42-2×4×3cosθ×cos(90°-θ),
∴在Rt△ACH中,
AC2=25-12sin2θ,
∴θ=45°时,AC长最小.
答案:45°
点评:考查折叠问题与面面垂直的性质,此类题一般要求先通过图象进行细致分析,将求AC最值的问题转化为求相应函数的最值问题.本题与三角函数的结合,用三角的有界性求最佳,是其一亮点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=3
3
,BC=3,沿对角线BD将BCD折起,使点C移到点C′,且C′在平面ABD的射影O恰好在AB上
(1)求证:BC′⊥面ADC′;
(2)求二面角A-BC′-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,已知AD=2,AB=a(a>2),E、F、G、H分别是边AD、AB、BC、CD上的点,若AE=AF=CG=CH,问AE取何值时,四边形EFGH的面积最大?并求最大的面积.

查看答案和解析>>

科目:高中数学 来源:设计必修二数学北师版 北师版 题型:044

如图,已知在矩形ABCD中,A(-4,4)、D(5,7),其对角线的交点E在第一象限内且与y轴的距离为一个单位,动点P(x,y)沿矩形一边BC运动,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1-5-5,在矩形ABCD中,过A作对角线BD的垂线AP与BD交于P,过P作BC、CD的垂线PE、PF,分别与BC、CD交于E、F.

1-5-5

求证:AP3=BD·PE·PF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知在矩形ABCD中,||=.设=a, =b, =c,求|a+b+c|.

查看答案和解析>>

同步练习册答案