精英家教网 > 高中数学 > 题目详情
10、已知m,n是两条不同直线,α,β是两个不同平面下列命题中不正确的是(  )
分析:A选项由线线平行的条件判断;B选项由线面垂直的条件判断;C选项由面面平行的条件判断;D选项由面面垂直的条件判断.
解答:解:A选项不正确,因为由线面平行的性质定理知,线平行于面,过线的面与已知面相交,则交线与已知线平行,由于m与β的位置关系不确定,故不能得出线线平行;
B选项正确,因为两条平行线中的一条垂直于某个平面,则另一条必垂直于这个平面;
C选项正确,两个平面垂直于同一条直线,则此两平面必平行;
D选项正确,一个平面过另一个平面的垂线,则这两个平面垂直.
综上,A选项不正确
故选A
点评:本题考查空间中直线与平面之间的位置关系,解题的关键是有较强的空间想像能力,熟练掌握空间中点线面位置关系判断的定理定义及条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知m,n是两条不同的直线,α是一个平面,有下列四个命题:
①①若m∥α,n∥α,则m∥n;②若m⊥α,n⊥α,则m∥n;
③若m∥α,n⊥α,则m⊥n;④若m⊥α,m⊥n,则n∥α.
其中真命题的序号有
②③
. (请将真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

4、已知m、n是两条不同直线,α、β、γ是三个不同平面,以下有三种说法:
①若α∥β,β∥γ,则γ∥α; ②若α⊥γ,β∥γ,则α⊥β;
③若m⊥β,m⊥n,n?β,则n∥β.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

6、已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是

①若α⊥γ,α⊥β,则γ∥β      ②若m∥n,m?α,n?β,则α∥β
③若m∥n,m∥α,则n∥α      ④若n⊥α,n⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知m、n是两条不同的直线,α、β是两个不同的平面,有下列命题:
①若m?α,n∥α,则m∥n;②若m∥α,m∥β,则α∥β;
③若m⊥α,m⊥n,则n∥α;④若m⊥α,m⊥β,则α∥β;
其中真命题的个数是
1个

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的有

①若m∥α,n∥α,则m∥n;               ②若α⊥γ,β⊥γ,则α∥β;
③若m∥α,m∥β,则α∥β;               ④若m⊥α,n⊥α,则m∥n.

查看答案和解析>>

同步练习册答案