| A. | [0,3] | B. | [$\frac{1}{3}$,3] | C. | [$\frac{4}{3}$,4] | D. | [$\frac{1}{3}$,2] |
分析 作出不等式组对应的平面区域,利用z的几何意义结合直线的斜率公式进行求解即可.
解答
解:作出变量x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤2}\\{y≥-1}\end{array}\right.$,对应的平面区域,
z=$\frac{y-2}{x-4}$的几何意义是区域内的点到定点D(4,2)的斜率,
由图象知DA的斜率最大,DB的斜率最小,
由$\left\{\begin{array}{l}{x+y=2}\\{y=-1}\end{array}\right.$解得A(3,-1),由$\left\{\begin{array}{l}{x=y}\\{x+y=2}\end{array}\right.$解得B(1,1)
∴z的最大值为z=$\frac{-1-2}{3-4}$=3,z的最小值为z=$\frac{1-2}{1-4}$=$\frac{1}{3}$,
则$\frac{y-2}{x-4}$的取值范围是的取值范围是[$\frac{1}{3}$,3],
故选:B.
点评 本题主要考查线性规划的应用,利用直线斜率的几何意义以及数形结合是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②③④ | B. | ①④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$ | B. | -2$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$ | C. | $\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$ | D. | 3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在直线y=-3x上 | B. | 在直线y=3x上 | C. | 在直线y=-4x上 | D. | 在直线y=4x上 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com