精英家教网 > 高中数学 > 题目详情
14.下列四种说法:
①函数$y=-\frac{1}{x}$在R上单调递增;
②若函数y=x2+2ax+1在(-∞,-1]上单调递减,则a≤1;
③若log0.7(2m)<log0.7(m-1),则m>-1;
④若f(x)是定义在R上的奇函数,则f(1-x)+f(x-1)=0.
其中正确的序号是(  )
A.①②B.②③C.③④D.②④

分析 ①函数$y=-\frac{1}{x}$在(-∞,0)和(0,+∞)上单调递增;
②若函数y=x2+2ax+1在(-∞,-1]上单调递减,则对称轴≥-1,得出则a≤1;
③若log0.7(2m)<log0.7(m-1),则2m>m-1>0,m>1,需考虑定义域;
④若f(x)是定义在R上的奇函数,根据奇函数的定义判断即可.

解答 解:①函数$y=-\frac{1}{x}$在(-∞,0)和(0,+∞)上单调递增,故错误;
②若函数y=x2+2ax+1在(-∞,-1]上单调递减,则对称轴x=-a≥-1,得出a≤1,故正确;
③若log0.7(2m)<log0.7(m-1),则2m>m-1>0,m>1,故错误;
④若f(x)是定义在R上的奇函数,则f(1-x)+f(x-1)=f(1-x)-f(1-x)=0,故正确.
故选:D.

点评 本题考查了函数的单调区间求解和奇函数的概念,属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若数列{an}是正项数列,且$\sqrt{a_1}+\sqrt{a_2}+…+\sqrt{a_n}={n^2}+3n$,则$\frac{a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+…+\frac{a_n}{n+1}$=2n2+6n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右焦点为F,上顶点为A,若直线AF与圆O:${x^2}+{y^2}=\frac{{3{a^2}}}{16}$相切,则该椭圆的离心率为(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$或$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}满足a3=7,a3+a7=26.
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{2n}{{{a_n}-8}}$(n∈N*),求数列{bn}的最大项和最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某舰艇在A处测得遇险渔船在北偏东45°方向上的C处,且到A的距离为10海里,此时得知,该渔船沿南偏东75°方向,以每小时9海里的速度向一小岛靠近,舰艇的速度为21海里/小时,则舰艇到达渔船的最短时间是$\frac{2}{3}$小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线l1:(3+m)x+4y=4,l2:2x+(5+m)y=8平行,实数m的值为(  )
A.-7B.-1C.$\frac{13}{3}$D.-1或-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为非零向量,则$\overrightarrow{a}$=$\overrightarrow{c}$是$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{x}$;
(1)求函数f(x)图象在x=1处切线l的方程;
(2)求由曲线y=$\sqrt{x}$,直线l及y轴围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|x-a|.
(1)当a=2时,解不等式f(x)≥4-|x-1|;
(2)若f(x)≤1的解集为[0,2],$\frac{1}{m}$+$\frac{1}{2n}$=a(m>0,n>0)求证:m+2n≥4.

查看答案和解析>>

同步练习册答案