精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\sqrt{x}$;
(1)求函数f(x)图象在x=1处切线l的方程;
(2)求由曲线y=$\sqrt{x}$,直线l及y轴围成图形的面积.

分析 (1)求出函数的导数,计算f(1),f′(1),求出切线方程即可;(2)求出交点坐标,根据定积分计算即可.

解答 解:(1)f′(x)=$\frac{1}{2\sqrt{x}}$,f(1)=1,f′(1)=$\frac{1}{2}$,
故切线方程是:y-1=$\frac{1}{2}$(x-1),
即$y=\frac{1}{2}x+\frac{1}{2}$;
(2)由$\left\{\begin{array}{l}{y=\frac{1}{2}(x+1)}\\{y=\sqrt{x}}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
故直线l及y轴围成图形的面积:
S=${∫}_{0}^{1}$[($\frac{1}{2}$(x+1)-$\sqrt{x}$]dx
=$\frac{1}{2}$($\frac{1}{2}$x2+x+c)${|}_{0}^{1}$-$\frac{2}{3}$${x}^{\frac{3}{2}}$${|}_{0}^{1}$
=$\frac{1}{12}$.

点评 本题考查了切线方程问题,考查导数的应用以及定积分问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项和为Sn,且关于x的方程x2-anx-an=0有一根为Sn-1.
(1)求出S1,S2,S3
(2)猜想{Sn}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列四种说法:
①函数$y=-\frac{1}{x}$在R上单调递增;
②若函数y=x2+2ax+1在(-∞,-1]上单调递减,则a≤1;
③若log0.7(2m)<log0.7(m-1),则m>-1;
④若f(x)是定义在R上的奇函数,则f(1-x)+f(x-1)=0.
其中正确的序号是(  )
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为正方形,且PA=AD=2,E、F分别为棱AD、PC的中点.
(1)求异面直线EF和PB所成角的大小;
(2)求证:平面PCE⊥平面PBC;
(3)求二面角E-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2$\sqrt{3}$sinxcosx-2sin2x,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A,B,C三种商品有购买意向.已知该网民购买A种商品的概率为$\frac{3}{4}$,购买B种商品的概率为$\frac{2}{3}$,购买C种商品的概率为$\frac{1}{2}$.假设该网民是否购买这三种商品相互独立.
(1)求该网民三种商品都买的概率;
(2)求该网民至少购买2种商品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知角θ的顶点是直角坐标系的原点,始边与x轴的非负半轴重合,角θ的终边上有一点P(-5,12).
(1)求sinθ,cosθ的值;
(2)求$\frac{{2sin(\frac{π}{2}+θ)+sin(2017π-θ)}}{{2cos(\frac{π}{2}-θ)-cos(2017π+θ)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x3-3x2-m存在2个零点,则这两个零点的和为(  )
A.1B.3C.1或4D.1或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知△ABC的三个顶点A(1,3),B(3,1),C(-1,0),则△ABC 的面积为5.

查看答案和解析>>

同步练习册答案