分析 (1)由题设求出S1=$\frac{1}{2}$,S2=$\frac{2}{3}$.S3=$\frac{3}{4}$.
(2)由此猜想Sn=$\frac{n}{n+1}$,n=1,2,3,….然后用数学归纳法证明这个结论.
解答 解:(1)当n=1时,x2-a1x-a1=0有一根为S1-1=a1-1,
于是(a1-1)2-a1(a1-1)-a1=0,解得a1=$\frac{1}{2}$.
当n=2时,x2-a2x-a2=0有一根为S2-1=a2-$\frac{1}{2}$,
于是(a2-$\frac{1}{2}$)2-a2(a2-$\frac{1}{2}$)-a2=0,
解得a2=$\frac{1}{6}$
由题设(Sn-1)2-an(Sn-1)-an=0,
Sn2-2Sn+1-anSn=0.
当n≥2时,an=Sn-Sn-1,
代入上式得Sn-1Sn-2Sn+1=0.①
得S1=a1=$\frac{1}{2}$,S2=a1+a2=$\frac{1}{2}$+$\frac{1}{6}$=$\frac{2}{3}$.
由①可得S3=$\frac{3}{4}$.
(2)由(1)猜想Sn=$\frac{n}{n+1}$,n=1,2,3,….
下面用数学归纳法证明这个结论.
(i)n=1时已知结论成立.
(ii)假设n=k时结论成立,即Sk=$\frac{k}{k+1}$,
当n=k+1时,由①得Sk+1=$\frac{1}{2-{S}_{k}}$,可得Sk+1=$\frac{k+1}{k+2}$,故n=k+1时结论也成立.
综上,由(i)、(ii)可知Sn=$\frac{n}{n+1}$对所有正整数n都成立.
点评 本题考查数列的综合应用,数学归纳法的应用,考查逻辑推理能力以及计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{π}^{3}}{81}$+$\frac{1}{2}$ | B. | $\frac{{π}^{3}}{81}$-$\frac{1}{2}$ | C. | $\frac{2π}{3}$-$\frac{1}{2}$ | D. | $\frac{2π}{3}$+$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}或-\frac{4}{3}$ | B. | -$\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | $\frac{3}{4}或-\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$或$\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com