精英家教网 > 高中数学 > 题目详情
13.设数列{an}的前n项和为Sn,且关于x的方程x2-anx-an=0有一根为Sn-1.
(1)求出S1,S2,S3
(2)猜想{Sn}的通项公式,并用数学归纳法证明.

分析 (1)由题设求出S1=$\frac{1}{2}$,S2=$\frac{2}{3}$.S3=$\frac{3}{4}$.
(2)由此猜想Sn=$\frac{n}{n+1}$,n=1,2,3,….然后用数学归纳法证明这个结论.

解答 解:(1)当n=1时,x2-a1x-a1=0有一根为S1-1=a1-1,
于是(a1-1)2-a1(a1-1)-a1=0,解得a1=$\frac{1}{2}$.
当n=2时,x2-a2x-a2=0有一根为S2-1=a2-$\frac{1}{2}$,
于是(a2-$\frac{1}{2}$)2-a2(a2-$\frac{1}{2}$)-a2=0,
解得a2=$\frac{1}{6}$
由题设(Sn-1)2-an(Sn-1)-an=0,
Sn2-2Sn+1-anSn=0.
当n≥2时,an=Sn-Sn-1
代入上式得Sn-1Sn-2Sn+1=0.①
得S1=a1=$\frac{1}{2}$,S2=a1+a2=$\frac{1}{2}$+$\frac{1}{6}$=$\frac{2}{3}$.
由①可得S3=$\frac{3}{4}$.
(2)由(1)猜想Sn=$\frac{n}{n+1}$,n=1,2,3,….
下面用数学归纳法证明这个结论.
(i)n=1时已知结论成立.
(ii)假设n=k时结论成立,即Sk=$\frac{k}{k+1}$,
当n=k+1时,由①得Sk+1=$\frac{1}{2-{S}_{k}}$,可得Sk+1=$\frac{k+1}{k+2}$,故n=k+1时结论也成立.
综上,由(i)、(ii)可知Sn=$\frac{n}{n+1}$对所有正整数n都成立.

点评 本题考查数列的综合应用,数学归纳法的应用,考查逻辑推理能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.利用定积分的定义计算下列积分的值:${∫}_{0}^{4}$(2x+3)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若数列{an}是正项数列,且$\sqrt{a_1}+\sqrt{a_2}+…+\sqrt{a_n}={n^2}+3n$,则$\frac{a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+…+\frac{a_n}{n+1}$=2n2+6n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若如图所示的程序框图输出的y=2,可输入的x的值的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定积分${∫}_{0}^{\frac{π}{3}}$(x2+sinx)dx的值为(  )
A.$\frac{{π}^{3}}{81}$+$\frac{1}{2}$B.$\frac{{π}^{3}}{81}$-$\frac{1}{2}$C.$\frac{2π}{3}$-$\frac{1}{2}$D.$\frac{2π}{3}$+$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若sinx+cosx=$\frac{1}{5}$,0<x<π,则tanx的值是(  )
A.$\frac{4}{3}或-\frac{4}{3}$B.-$\frac{4}{3}$C.-$\frac{3}{4}$D.$\frac{3}{4}或-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右焦点为F,上顶点为A,若直线AF与圆O:${x^2}+{y^2}=\frac{{3{a^2}}}{16}$相切,则该椭圆的离心率为(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$或$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}满足a3=7,a3+a7=26.
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{2n}{{{a_n}-8}}$(n∈N*),求数列{bn}的最大项和最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{x}$;
(1)求函数f(x)图象在x=1处切线l的方程;
(2)求由曲线y=$\sqrt{x}$,直线l及y轴围成图形的面积.

查看答案和解析>>

同步练习册答案